Solid freeform fabrication of powders using laser processing

1997 ◽  
Vol 53 (7-8) ◽  
pp. 43 ◽  
Author(s):  
D Bourell
2004 ◽  
Vol 860 ◽  
Author(s):  
Pranav Kumar ◽  
Suman Das

ABSTRACTWe present a concept for multi-material solid freeform fabrication of 2D and layered 3D heterogeneous components. This technique involves direct-write deposition of multiple, patterned powder materials followed by laser processing. The direct-write deposition system features miniature hopper-nozzles for depositing dry powdered materials by gravity or by high frequency vibration-assisted flow onto a movable substrate. A dual wavelength laser processing workstation was used to consolidate the deposited pattern to desired densities. The feasibility of this concept was proved by direct-writing and laser processing various powder material patterns.


2001 ◽  
Author(s):  
D. L. Bourell ◽  
J. J. Beaman ◽  
Jr

1998 ◽  
Vol 122 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Charalabos Doumanidis ◽  
Eleni Skordeli

Recent solid freeform fabrication methods generate 3D solid objects by material deposition in successive layers made of adjacent beads. Besides numerical simulation, this article introduces an analytical model of such material addition, using superposition of unit deposition distributions, composed of elementary spherical primitives consistent with the mass transfer physics. This real-time surface geometry model, with its parameters identified by in-process profile measurements, is used for Smith-prediction of the material shape in the unobservable deposition region. The model offers the basis for a distributed-parameter geometry control scheme to obtain a desired surface topology, by modulating the feed and motion of a moving mass source. The model was experimentally tested on a fused wire deposition welding station, using optical sensing by a scanning laser stripe. Its applications to other rapid prototyping methods are discussed. [S0022-0434(00)02301-7]


2011 ◽  
Vol 409 ◽  
pp. 843-848
Author(s):  
David W. Heard ◽  
Julien Boselli ◽  
Raynald Gauvin ◽  
Mathieu Brochu

Aluminum-lithium (Al-Li) alloys are of interest to the aerospace and aeronautical industries as rising fuel costs and increasing environmental restrictions are promoting reductions in vehicle weight. However, Al-Li alloys suffer from several issues during fusion welding processes including solute segregation and depletion. Solid freeform fabrication (SFF) of materials is a repair or rapid prototyping process, in which the deposited feedstock is built-up via a layering process to the required geometry. Recent developments have led to the investigation of SFF processes via Gas Metal Arc Welding (GMAW) capable of producing functional metallic components. A SFF process via GMAW would be instrumental in reducing costs associated with the production and repair of Al-Li components. Furthermore the newly developed Controlled-Short-Circuit-MIG (CSC-MIG) process provides the ability to control the weld parameters with a high degree of accuracy, thus enabling the optimization of the solidification parameters required to avoid solute depletion and segregation within an Al-Li alloy. The objective of this study is to develop the welding parameters required to avoid lithium depletion and segregation. In the present study weldments were produced via CSC-MIG process, using Al-Li 2199 sheet samples as the filler material. The residual lithium concentration within the weldments was then determined via Atomic Absorption (AA) and X-ray Photoelectron Spectroscopy (XPS). The microstructure was analyzed using High Resolution Scanning Electron Microscopy (HR-SEM). Finally the mechanical properties of welded samples were determined through the application of hardness and tensile testing.


Sign in / Sign up

Export Citation Format

Share Document