Mutagenic DNA repair in Escherichia coli. V. Mutation frequency decline and error-free post-replication repair in an excision-proficient strain

Author(s):  
M.H.L. Green ◽  
B.A. Bridges ◽  
J.E. Eyfjörd ◽  
W.J. Muriel
2010 ◽  
Vol 76 (16) ◽  
pp. 5463-5470 ◽  
Author(s):  
Amarjeet Singh ◽  
Anis Karimpour-Fard ◽  
Ryan T. Gill

ABSTRACT Balancing of reducing equivalents is a fundamental issue in bacterial metabolism and metabolic engineering. Mutations in the key metabolic genes ldhA and pflB of Escherichia coli are known to stall anaerobic growth and fermentation due to a buildup of intracellular NADH. We observed that the rate of spontaneous mutation in E. coli BW25113 (ΔldhA ΔpflB) was an order of magnitude higher than that in wild-type (WT) E. coli BW25113. We hypothesized that the increased mutation frequency was due to an increased NADH/NAD+ ratio in this strain. Using several redox-impaired strains of E. coli and different redox conditions, we confirmed a significant correlation (P < 0.01) between intracellular-NADH/NAD+ ratio and mutation frequency. To identify the genetic basis for this relationship, whole-genome transcriptional profiles were compared between BW25113 WT and BW25113 (ΔldhA ΔpflB). This analysis revealed that the genes involved in DNA repair were expressed at significantly lower levels in BW25113 (ΔldhA ΔpflB). Direct measurements of the extent of DNA repair in BW25113 (ΔldhA ΔpflB) subjected to UV exposure confirmed that DNA repair was inhibited. To identify a direct link between DNA repair and intracellular-redox ratio, the stringent-response-regulatory gene relA and the global-stress-response-regulatory gene rpoS were deleted. In both cases, the mutation frequencies were restored to BW25113 WT levels.


1975 ◽  
Vol 140 (3) ◽  
pp. 221-230 ◽  
Author(s):  
O. P. Doubleday ◽  
B. A. Bridges ◽  
M. H. L. Green

Sign in / Sign up

Export Citation Format

Share Document