suppressor mutations
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 38)

H-INDEX

38
(FIVE YEARS 4)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Oscar Urtatiz ◽  
Amanda Haage ◽  
Guy Tanentzapf ◽  
Catherine D Van Raamsdonk

Different melanoma subtypes exhibit specific and non-overlapping sets of oncogene and tumor suppressor mutations, despite a common cell of origin in melanocytes. For example, activation of the Gαq/11 signaling pathway is a characteristic initiating event in primary melanomas that arise in the dermis, uveal tract or central nervous system. It is rare in melanomas arising in the epidermis. The mechanism for this specificity is unknown. Here, we present evidence that in the mouse, crosstalk with the epidermal microenvironment actively impairs the survival of melanocytes expressing the GNAQQ209L oncogene. We found that GNAQQ209L, in combination with signaling from the interfollicular epidermis (IFE), stimulates dendrite extension, leads to actin cytoskeleton disorganization, inhibits proliferation and promotes apoptosis in melanocytes. The effect was reversible and paracrine. In contrast, the epidermal environment increased the survival of wildtype and BrafV600E expressing melanocytes. Hence, our studies reveal the flip side of Gaq/11 signaling, which was hitherto unsuspected. In the future, the identification of the epidermal signals that restrain the GNAQQ209L oncogene could suggest novel therapies for GNAQ and GNA11 mutant melanomas.


2021 ◽  
Author(s):  
Gopinath Chattopadhyay ◽  
Jayantika Bhowmick ◽  
Kavyashree Manjunath ◽  
Shahbaz Ahmed ◽  
Parveen Goyal ◽  
...  

Most amino acid substitutions in a protein either lead to partial loss of function or are near neutral. Several studies have shown the existence of second-site mutations that can rescue defects caused by diverse loss of function mutations. Such global suppressor mutations are key drivers of protein evolution. However, the mechanisms responsible for such suppression remain poorly understood. To address this, we characterized multiple suppressor mutations both in isolation and in combination with inactive mutants. We examined five global suppressors of the bacterial toxin CcdB, the known M182T global suppressor of TEM-1 β-lactamase, the N239Y global suppressor of p53-DBD and three suppressors of the SARS-CoV-2 spike Receptor Binding Domain. The suppressors both alone, and in conjunction with inactive mutants, stabilise the protein both thermodynamically and kinetically in-vitro, predominantly through acceleration of the refolding rate parameters. When coupled to inactive mutants they promote increased in-vivo solubilities as well as regain-of-function phenotypes. Our study also demonstrates that the global suppressor approach can be used to consistently stabilise wild-type proteins, including for downstream translational applications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tohru Minamino ◽  
Yusuke V. Morimoto ◽  
Miki Kinoshita ◽  
Keiichi Namba

FlgN, FliS, and FliT are flagellar export chaperones specific for FlgK/FlgL, FliC, and FliD, respectively, which are essential component proteins for filament formation. These chaperones facilitate the docking of their cognate substrates to a transmembrane export gate protein, FlhA, to facilitate their subsequent unfolding and export by the flagellar type III secretion system (fT3SS). Dynamic interactions of the chaperones with FlhA are thought to determine the substrate export order. To clarify the role of flagellar chaperones in filament assembly, we constructed cells lacking FlgN, FliS, and/or FliT. Removal of either FlgN, FliS, or FliT resulted in leakage of a large amount of unassembled FliC monomers into the culture media, indicating that these chaperones contribute to robust and efficient filament formation. The ∆flgN ∆fliS ∆fliT (∆NST) cells produced short filaments similarly to the ∆fliS mutant. Suppressor mutations of the ∆NST cells, which lengthened the filament, were all found in FliC and destabilized the folded structure of FliC monomer. Deletion of FliS inhibited FliC export and filament elongation only after FliC synthesis was complete. We propose that FliS is not involved in the transport of FliC upon onset of filament formation, but FliS-assisted unfolding of FliC by the fT3SS becomes essential for its rapid and efficient export to form a long filament when FliC becomes fully expressed in the cytoplasm.


2021 ◽  
Vol 22 (16) ◽  
pp. 8873
Author(s):  
Caroline Dillard ◽  
José Gerardo Teles Reis ◽  
Tor Erik Rusten

The phenomenon of how oncogenes and tumor-suppressor mutations can synergize to promote tumor fitness and cancer progression can be studied in relatively simple animal model systems such as Drosophila melanogaster. Almost two decades after the landmark discovery of cooperative oncogenesis between oncogenic RasV12 and the loss of the tumor suppressor scribble in flies, this and other tumor models have provided new concepts and findings in cancer biology that has remarkable parallels and relevance to human cancer. Here we review findings using the RasV12; scrib−/− tumor model and how it has contributed to our understanding of how these initial simple genetic insults cooperate within the tumor cell to set in motion the malignant transformation program leading to tumor growth through cell growth, cell survival and proliferation, dismantling of cell–cell interactions, degradation of basement membrane and spreading to other organs. Recent findings have demonstrated that cooperativity goes beyond cell intrinsic mechanisms as the tumor interacts with the immediate cells of the microenvironment, the immune system and systemic organs to eventually facilitate malignant progression.


2021 ◽  
Author(s):  
Oscar Urtatiz ◽  
Amanda Haage ◽  
Guy Tanentzapf ◽  
Catherine D. Van Raamsdonk

Different melanoma subtypes exhibit specific and non-overlapping sets of oncogene and tumor suppressor mutations, despite a common cell of origin in melanocytes. For example, activation of the Gαq/11 signaling pathway is a characteristic initiating event in primary melanomas that arise in the dermis, uveal tract or central nervous system. It is rare in melanomas arising in the epidermis. Here, we present evidence that in the mouse, crosstalk with the epidermal microenvironment actively impairs the survival of melanocytes expressing the GNAQQ209L oncogene, providing a new model for oncogene specificity in cancer. The presence of epidermal cells inhibited cell division and fragmented dendrites of melanocytes expressing GNAQQ209L in culture, while they promoted the growth of normal melanocytes. Differential gene expression analysis of FACS sorted epidermal melanocytes showed that cells expressing GNAQQ209L exhibit an oxidative stress and apoptosis signature previously linked to vitiligo. Furthermore, PLCB4, the direct downstream effector of Gαq/11 signaling, is frequently mutated in cutaneous melanoma alongside P53 and NF1. Our results suggest that a deficiency of PLCB4 promotes cutaneous melanomagenesis by reducing GNAQ driven signaling. Hence, our studies reveal the flip side of the GNAQ/PLCB4 signaling pathway, which was hitherto unsuspected. In the future, understanding how epidermal crosstalk restrains the GNAQQ209L oncogene could suggest novel melanoma therapies.


2021 ◽  
Author(s):  
Yuanchen Yu ◽  
Felix Dempwolff ◽  
Reid T. Oshiro ◽  
Frederico J. Gueiros-Filho ◽  
Stephen C. Jacobson ◽  
...  

During growth, bacteria increase in size and divide. Division is initiated by the formation of the Z-ring, a ring-like cytoskeletal structure formed by treadmilling protofilaments of the tubulin homolog FtsZ. FtsZ localization is thought to be controlled by the Min and Noc systems, and here, we explore why cell division fails at high temperature when the Min and Noc systems are simultaneously mutated. Microfluidic analysis of a minD noc double mutant indicated that FtsZ formed proto-Z-rings at periodic inter-chromosome locations but that the rings failed to mature and become functional. Extragenic suppressor analysis indicated that a variety of mutations restored high temperature growth to the minD noc double mutant, and while many were likely pleiotropic, others implicated the proteolysis of the transcription factor Spx. Further analysis indicated that a Spx-dependent pathway activated the expression of ZapA, a protein that primarily compensates for the absence of Noc. Additionally, an Spx-independent pathway increased the activity of the divisome to reduce the length of the cytokinetic period. Finally, we provide evidence of an as-yet-unidentified protein that is activated by Spx and governs the frequency of polar division and minicell formation. IMPORTANCE Bacteria must properly position the location of the cell division machinery in order to grow, divide, and ensure each daughter cell receives one copy of the chromosome. In B. subtilis , cell division site selection depends on the Min and Noc systems, and while neither is individually essential, cells fail to grow at high temperature when both are mutated. Here, we show that cell division fails in the absence of Min and Noc, not due to a defect in FtsZ localization, but rather a failure in the maturation of the cell division machinery. Suppressor mutations that restored growth were selected and while some activated the expression of ZapA via the Spx stress response pathway, others appeared to directly enhance divisome activity.


2021 ◽  
Vol 22 (10) ◽  
pp. 5099
Author(s):  
Patrycja Gorzelak ◽  
Gracjana Klein ◽  
Satish Raina

To identify the physiological factors that limit the growth of Escherichia coli K-12 strains synthesizing minimal lipopolysaccharide (LPS), we describe the first construction of strains devoid of the entire waa locus and concomitantly lacking all three acyltransferases (LpxL/LpxM/LpxP), synthesizing minimal lipid IVA derivatives with a restricted ability to grow at around 21 °C. Suppressors restoring growth up to 37 °C of Δ(gmhD-waaA) identified two independent single-amino-acid substitutions—P50S and R310S—in the LPS flippase MsbA. Interestingly, the cardiolipin synthase-encoding gene clsA was found to be essential for the growth of ΔlpxLMP, ΔlpxL, ΔwaaA, and Δ(gmhD-waaA) bacteria, with a conditional lethal phenotype of Δ(clsA lpxM), which could be overcome by suppressor mutations in MsbA. Suppressor mutations basS A20D or basR G53V, causing a constitutive incorporation of phosphoethanolamine (P-EtN) in the lipid A, could abolish the Ca++ sensitivity of Δ(waaC eptB), thereby compensating for P-EtN absence on the second Kdo. A single-amino-acid OppA S273G substitution is shown to overcome the synthetic lethality of Δ(waaC surA) bacteria, consistent with the chaperone-like function of the OppA oligopeptide-binding protein. Furthermore, overexpression of GcvB sRNA was found to repress the accumulation of LpxC and suppress the lethality of LapAB absence. Thus, this study identifies new and limiting factors in regulating LPS biosynthesis.


2021 ◽  
Author(s):  
Samuel Lee ◽  
Larry Gallagher ◽  
Colin Manoil

The P. aeruginosa reference strain PAO1 has been used to delineate much of the physiology, metabolism and fundamental biology of the species. The wild-type parent of PAO1 was lost, and PAO1 carries a regulatory mutation introduced for positive genetic selection that affects antibiotic resistance, virulence, quorum sensing and other traits. The mutation is a loss-of-function change in an oxidoreductase gene (mexS), which constitutively activates a stress response controlled by a positive regulator (MexT). Fitness defects associated with the constitutive response have led to the inadvertent selection of mexT– suppressor mutations, creating genetic heterogeneity in PAO1 sublines studied in different laboratories. To help circumvent complications due to the mexS–minus phenotypes, we created a wild-type version of PAO1 (called LPAO) by “reverting” its mexS to the functional allele likely to have been in its parent. Phenotypic analysis revealed that the mexS– allele in PAO1 makes growth sensitive to salt (NaCl) and is lethal when combined with mutations inactivating the major sodium antiporter (ShaABCDEF). The salt sensitivity of PAO1 may underlie some complex mexS– phenotypes and help explain the selection of mexT– suppressor mutations. To facilitate genetic comparisons of PAO1, LPAO and other P. aeruginosa strains, we developed a transformation procedure to transfer selectable alleles, such as transposon insertion alleles, between strains. Overall, the study helps explain phenotypic heterogeneity of PAO1-derived strains and provides resources to help recognize and eliminate difficulties due to it. IMPORTANCE The P. aeruginosa reference strain PAO1 carries a regulatory mutation that may affect processes characterized in it. To eliminate complications due to the mutation, we constructed a version of the missing wild-type parent strain and developed methods to transfer mutations between PAO1 and the new strain. The methods are likely to be applicable to other isolates of P. aeruginosa as well.


Author(s):  
Patricia P Peterson ◽  
Zhengchang Liu

Abstract Nutrient sensing is important for cell growth, aging, and longevity. In Saccharomyces cerevisiae, Sch9, an AGC-family protein kinase, is a major nutrient sensing kinase homologous to mammalian Akt and S6 kinase. Sch9 integrates environmental cues with cell growth by functioning downstream of TORC1 and in parallel with the Ras/PKA pathway. Mutations in SCH9 lead to reduced cell growth in dextrose medium; however, reports on the ability of sch9Δ mutants to utilize non-fermentable carbon sources are inconsistent. Here we show that sch9Δ mutant strains cannot grow on non-fermentable carbon sources and rapidly accumulate suppressor mutations, which reverse growth defects of sch9Δ mutants. sch9Δ induces gene expression of three transcription factors required for utilization of non-fermentable carbon sources, Cat8, Adr1, and Hap4, while sch9Δ suppressor mutations, termed sns1 and sns2, strongly decrease the gene expression of those transcription factors. Despite the genetic suppression interactions, both sch9Δ and sns1 (or sns2) homozygous mutants have severe defects in meiosis. By screening mutants defective in sporulation, we identified additional sch9Δ suppressor mutants with mutations in GPB1, GPB2, and MCK1. Using library complementation and genetic analysis, we identified SNS1 and SNS2 to be IRA2 and IRA1, respectively. Furthermore, we discovered that lifespan extension in sch9Δ mutants is dependent on IRA2 and that PKA inactivation greatly increases basal expression of CAT8, ADR1, and HAP4. Our results demonstrate that sch9Δ leads to complete loss of growth on non-fermentable carbon sources and mutations in MCK1 or genes encoding negative regulators of the Ras/PKA pathway reverse sch9Δ mutant phenotypes.


2021 ◽  
Author(s):  
Clay D. Jackson-Litteken ◽  
C. Tyler Ratliff ◽  
Alexander R. Kneubehl ◽  
Cheta Siletti ◽  
Lindsay Pack ◽  
...  

Relapsing fever (RF), caused by spirochetes of the genus Borrelia, is a globally distributed, vector-borne disease with high prevalence in developing countries. To date, signaling pathways required for infection and virulence of RF Borrelia spirochetes are unknown. Cyclic di-AMP (c-di-AMP), synthesized by diadenylate cyclases (DACs), is a second messenger predominantly found in Gram-positive organisms that is linked to virulence and essential physiological processes. Although Borrelia is Gram-negative, it encodes one DAC (CdaA), and its importance remains undefined. To investigate the contribution of c-di-AMP signaling in the RF bacterium, Borrelia turicatae, a cdaA mutant was generated. The mutant was significantly attenuated during murine infection, and genetic complementation reversed this phenotype. Because c-di-AMP is essential for viability in many bacteria, whole genome sequencing was performed on cdaA mutants, and single nucleotide polymorphisms identified potential suppressor mutations. Additionally, conditional mutation of cdaA confirmed that CdaA is important for normal growth and physiology. Interestingly, mutation of cdaA did not affect expression of homologs of virulence regulators whose levels are impacted by c-di-AMP signaling in the Lyme disease bacterium, Borrelia burgdorferi. Finally, the cdaA mutant had a significant growth defect when grown with salts, at decreased osmolarity, and without pyruvate. While the salt treatment phenotype was not reversed by genetic complementation, possibly due to suppressor mutations, growth defects at decreased osmolarity and in media lacking pyruvate could be attributed directly to cdaA inactivation. Overall, these results indicate CdaA is critical for B. turicatae pathogenesis and link c-di-AMP to osmoregulation and central metabolism in RF spirochetes.


Sign in / Sign up

Export Citation Format

Share Document