Isolation of a right hemisphere cognitive system in a patient with anarchic (alien) hand sign

1997 ◽  
Vol 35 (8) ◽  
pp. 1159-1173 ◽  
Author(s):  
K Baynes
Author(s):  
Shaun Gallagher ◽  
Daniel Hutto ◽  
Inês Hipólito

AbstractA number of perceptual (exteroceptive and proprioceptive) illusions present problems for predictive processing accounts. In this chapter we’ll review explanations of the Müller-Lyer Illusion (MLI), the Rubber Hand Illusion (RHI) and the Alien Hand Illusion (AHI) based on the idea of Prediction Error Minimization (PEM), and show why they fail. In spite of the relatively open communicative processes which, on many accounts, are posited between hierarchical levels of the cognitive system in order to facilitate the minimization of prediction errors, perceptual illusions seemingly allow prediction errors to rule. Even if, at the top, we have reliable and secure knowledge that the lines in the MLI are equal, or that the rubber hand in the RHI is not our hand, the system seems unable to correct for sensory errors that form the illusion. We argue that the standard PEM explanation based on a short-circuiting principle doesn’t work. This is the idea that where there are general statistical regularities in the environment there is a kind of short circuiting such that relevant priors are relegated to lower-level processing so that information from higher levels is not exchanged (Ogilvie and Carruthers, Review of Philosophy and Psychology 7:721–742, 2016), or is not as precise as it should be (Hohwy, The Predictive Mind, Oxford University Press, Oxford, 2013). Such solutions (without convincing explanation) violate the idea of open communication and/or they over-discount the reliable and secure knowledge that is in the system. We propose an alternative, 4E (embodied, embedded, extended, enactive) solution. We argue that PEM fails to take into account the ‘structural resistance’ introduced by material and cultural factors in the broader cognitive system.


Author(s):  
Anastasia M. Raymer ◽  
Beth McHose ◽  
Kimberly Graham

Purpose: Luria (1970) proposed the use of intersystemic reorganization to use an intact system to facilitate improvements in a damaged cognitive system. In this article, we review literature examining the effects of gesture as a modality to promote reorganization to improve verbal production in apraxia of speech and anomia. Methods: A gestural facilitation training paradigm is described and results of a recent systematic review of apraxia of speech treatment are reviewed. The interplay between apraxia of speech and anomia are considered in response to gestural facilitation training. Results & Conclusions: Gestural facilitation effects are strongest in individuals with moderate apraxia of speech. Several factors appear to mitigate the effects of gestural facilitation for verbal production, including severe apraxia of speech and semantic anomia. Severe limb apraxia, which often accompanies severe apraxia of speech, appears to be amenable to gestural treatment, providing improvements in gesture use for communication when verbal production gains are not evident.


2003 ◽  
Vol 14 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Walter Sturm

Abstract: Behavioral and PET/fMRI-data are presented to delineate the functional networks subserving alertness, sustained attention, and vigilance as different aspects of attention intensity. The data suggest that a mostly right-hemisphere frontal, parietal, thalamic, and brainstem network plays an important role in the regulation of attention intensity, irrespective of stimulus modality. Under conditions of phasic alertness there is less right frontal activation reflecting a diminished need for top-down regulation with phasic extrinsic stimulation. Furthermore, a high overlap between the functional networks for alerting and spatial orienting of attention is demonstrated. These findings support the hypothesis of a co-activation of the posterior attention system involved in spatial orienting by the anterior alerting network. Possible implications of these findings for the therapy of neglect are proposed.


2013 ◽  
Vol 27 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Konstantinos Trochidis ◽  
Emmanuel Bigand

The combined interactions of mode and tempo on emotional responses to music were investigated using both self-reports and electroencephalogram (EEG) activity. A musical excerpt was performed in three different modes and tempi. Participants rated the emotional content of the resulting nine stimuli and their EEG activity was recorded. Musical modes influence the valence of emotion with major mode being evaluated happier and more serene, than minor and locrian modes. In EEG frontal activity, major mode was associated with an increased alpha activation in the left hemisphere compared to minor and locrian modes, which, in turn, induced increased activation in the right hemisphere. The tempo modulates the arousal value of emotion with faster tempi associated with stronger feeling of happiness and anger and this effect is associated in EEG with an increase of frontal activation in the left hemisphere. By contrast, slow tempo induced decreased frontal activation in the left hemisphere. Some interactive effects were found between mode and tempo: An increase of tempo modulated the emotion differently depending on the mode of the piece.


Author(s):  
Gregor Volberg

Previous studies often revealed a right-hemisphere specialization for processing the global level of compound visual stimuli. Here we explore whether a similar specialization exists for the detection of intersected contours defined by a chain of local elements. Subjects were presented with arrays of randomly oriented Gabor patches that could contain a global path of collinearly arranged elements in the left or in the right visual hemifield. As expected, the detection accuracy was higher for contours presented to the left visual field/right hemisphere. This difference was absent in two control conditions where the smoothness of the contour was decreased. The results demonstrate that the contour detection, often considered to be driven by lateral coactivation in primary visual cortex, relies on higher-level visual representations that differ between the hemispheres. Furthermore, because contour and non-contour stimuli had the same spatial frequency spectra, the results challenge the view that the right-hemisphere advantage in global processing depends on a specialization for processing low spatial frequencies.


1990 ◽  
Vol 35 (6) ◽  
pp. 544-547
Author(s):  
Randi C. Martin
Keyword(s):  

2010 ◽  
Author(s):  
Peii Chen ◽  
C. Priscilla Galarza ◽  
Kimberly Hreha ◽  
Tara Miceli ◽  
Anna M. Barrett

Sign in / Sign up

Export Citation Format

Share Document