Prediction of shock response for a quadrupod-mast using response spectrum analysis method

2002 ◽  
Vol 29 (8) ◽  
pp. 887-914 ◽  
Author(s):  
Cho-Chung Liang ◽  
Min-Fang Yang ◽  
Yuh-Shiou Tai
2013 ◽  
Vol 639-640 ◽  
pp. 906-910
Author(s):  
Yang Xu ◽  
Jun Zhao ◽  
Xiao Yan Xu ◽  
Dan Zhu

The multi-dimensional seismic response of a single-span hangar was studied by response spectrum analysis method. The lateral displacements of the structure, forces of its supporting columns and its roof structure were calculated and compared with each other for cases of one-, two- and three-dimensional (1D, 2D and 3D) seismic inputs. The results show that, compared with the case of 1D earthquake input, the effects of horizontally 2D earthquake inputs on the internal forces and displacements of its supporting columns in the primary direction of input are obvious when it is along the symmetrical axis of the hangar and their effects in the secondary direction of input are even more important which results in great increases of the internal forces and displacements in that direction. The vertical seismic input has almost no effect on the internal forces and displacements of columns. The internal forces in different parts of the roof structure are controlled by horizontal or vertical inputs, respectively, and, compared with those from horizontally or vertically 1D inputs, the responses from 3D inputs are increased and the effects should be considered in seismic design.


2020 ◽  
Vol 23 (sup1) ◽  
pp. S28-S30
Author(s):  
D. Benjamin ◽  
S. Odof ◽  
B. Abbes ◽  
J.B. Nolot ◽  
D. Erre ◽  
...  

Author(s):  
Ichiro Tamura ◽  
Michiya Sakai ◽  
Shinichi Matsuura ◽  
Ryuya Shimazu ◽  
Hiroaki Tamashiro ◽  
...  

Abstract An inelastic response-spectrum-analysis method for multi-degree-of-freedom systems was proposed. The method has lower analysis loads and good outlook given by the inelastic response spectrum like the elastic response-spectrum-analysis method, and is not an equivalent-linearization method. We propose a seismic evaluation method of piping systems to conduct seismic design using the inelastic response-spectrum-analysis. In this paper, the inelastic analysis method of piping systems for the seismic evaluation method is proposed and applied to a benchmark analysis problem of a piping system vibration test. The analysis result is compared with the vibration test result of the piping system. They are consistent and applicability of the analysis to the piping system was confirmed.


Sign in / Sign up

Export Citation Format

Share Document