Late Glacial and Holocene vegetation history and paleoclimate of the Kaibab Plateau, Arizona

1999 ◽  
Vol 153 (1-4) ◽  
pp. 179-201 ◽  
Author(s):  
Chengyu Weng ◽  
Stephen T Jackson
2007 ◽  
Vol 29 (-1) ◽  
pp. 23-43 ◽  
Author(s):  
Krystyna Bałaga

Transformation of Lake Ecosystem into Peat Bog and Vegetation History Based on Durne Bagno Mire (Lublin Polesie, E Poland)In this paper, the history of Durne Bagno, i.e. the largest peat bog in the Lublin Polesie, is shown. Peat bogs are a unique element of the Polesie landscape. They occur mostly in the subregion of the Łęczna-Włodawa Lake District occupying 1.07% of its area. They fill basin-shaped depressions without outflow, often in the immediate vicinity of dystrophic lakes. Based on interdisciplinary research, the changes of vegetation cover and the Durne Bagno lake-mire ecosystem in the Late Glacial and Holocene are presented. The environmental conditions are reconstructed from pollen analysis, detailed identification of algae ofPediastrumgenus and chemical composition of deposits, together with the results of Cladocera analysis. The distribution of archaeological artefacts in the surroundings of Durne Bagno peat bog gives the view on the intensity of settlement in this area. The duration of the limnic and mire stages during the development of the ecosystem was different in different parts of the examined depression. In its central part the limnic stage lasted about 8000 years and included the period from the Late Glacial to the middle Holocene (to about 6000 BP). It is represented by 7 pollen zones and 6 chemical zones. The mire stage contained a part the Atlantic period and on the Subboreal and Subatlantic periods. It is represented by 4 pollen zones and 5 chemical zones. Limnic and mire deposits differ widely in the concentrations of chemical elements. The contents of mineral material and almost all analyzed elements in limnic deposits are high. These deposits are characterized by positive correlation between the contents of Zn and Cr and the frequency of Cladocera fauna. Peat contains very low amount of mineral material. The contents of Ca, Sr and Ba are rather high in sedgemoss peat. The concentrations of these elements decrease upwards due to oligotrophic processes and sedentation of sedge-Eriophorum-Sphagnumpeat. Peat succession was modified by pastoral economy of prehistoric man.


2017 ◽  
Author(s):  
Alessia Masi ◽  
Alexander Francke ◽  
Caterina Pepe ◽  
Matthias Thienemann ◽  
Bernd Wagner ◽  
...  

Abstract. A new high-resolution pollen and NPPs (Non-Pollen Palynomorphs) analysis has been performed on the sediments of Lake Dojran, a transboundary lake located at the border between Greece and Former Yugoslavian Republic of Macedonia (FYROM). The sequence covers the last 12 500 years and provides information on vegetational dynamics of the Late Glacial and Holocene for southern Balkans. A robust age-model, sedimentological, diatom, and biomarker analyses published previously have been the base 5 for a multi-perspective interpretation of the new palynological data. Pollen analysis revealed that the Late Glacial is characterized by steppic taxa with prevailing Amaranthaceae, Artemisia and Poaceae. The arboreal vegetation starts to rise after 11 500 yr BP, taking a couple of millennia to be definitively attested. Holocene vegetation is characterized by the dominance of mesophilous plants. Quercus robur type and Pinus are the most abundant taxa followed by Quercus cerris type, Quercus ilex type and Ostrya/Carpinus orientalis. The first attestation of human presence can be presumed at 5000 yr BP for the 10 contemporary presence of cereals, Juglans and Rumex. A drop of both pollen concentration and influx together with a δ18Ocarb shift indicates increasing aridity and precedes clear and continuous human signs since 4000 yr BP. Also a correlation between Pediastrum boryanum and fecal stanol suggests that the increase of nutrient in the water is related to human presence and pasture. An undoubted expansion of human-related plants occurs since 2600 yr BP when cereals, arboreal cultivated and other synanthropic non-cultivated taxa are found. A strong reduction in arboreal vegetation occurred at 2000 yr BP, when the strong 15 Roman Empire impacted on a landscape undergoing climate dryness in the whole Mediterranean area. In recent centuries the human impact still remains high but spots of natural vegetation are preserved. The Lake Dojran multi-proxy analysis including pollen data provide a valuable contribution to the palaeoenvironmental reconstruction and the comprehension of the past vegetation dynamics of southern Balkans.


2018 ◽  
Vol 14 (3) ◽  
pp. 351-367 ◽  
Author(s):  
Alessia Masi ◽  
Alexander Francke ◽  
Caterina Pepe ◽  
Matthias Thienemann ◽  
Bernd Wagner ◽  
...  

Abstract. A new high-resolution pollen and NPP (non-pollen palynomorph) analysis has been performed on the sediments of Lake Dojran, a transboundary lake located at the border between Greece and the former Yugoslav Republic of Macedonia (FYROM). The sequence covers the last 12 500 years and provides information on the vegetational dynamics of the Late Glacial and Holocene for the southern Balkans. Robust age model, sedimentological diatom, and biomarker analyses published previously have been the base for a multi-perspective interpretation of the new palynological data. Pollen analysis revealed that the Late Glacial is characterized by steppic taxa with prevailing Amaranthaceae, Artemisia and Poaceae. The arboreal vegetation starts to rise after 11 500 yr BP, taking a couple of millennia to be definitively attested. Holocene vegetation is characterized by the dominance of mesophilous plants. The Quercus robur type and Pinus are the most abundant taxa, followed by the Quercus cerris type, the Quercus ilex type and Ostrya–Carpinus orientalis. The first attestation of human presence can be presumed at 5000 yr BP from the contemporary presence of cereals, Juglans and Rumex. A drop in both pollen concentration and influx together with a δ18Ocarb shift indicates increasing aridity and precedes clear and continuous human signs since 4000 yr BP. Also, a correlation between Pediastrum boryanum and fecal stanol suggests that the increase in nutrients in the water is related to human presence and pasture. An undoubted expansion of human-related plants occurs since 2600 yr BP when cereals, arboreal cultivated and other synanthropic non-cultivated taxa are found. A strong reduction in arboreal vegetation occurred at 2000 yr BP, when the Roman Empire impacted a landscape undergoing climate dryness in the whole Mediterranean area. In recent centuries the human impact still remains high but spots of natural vegetation are preserved. The Lake Dojran multi-proxy analysis including pollen data provides clear evidence of the importance of this approach in paleoenvironmental reconstruction. Cross-interpretation of several proxies allows us to comprehend past vegetation dynamics and human impact in the southern Balkans.


2004 ◽  
Vol 13 (4) ◽  
pp. 249-255 ◽  
Author(s):  
Martinus Fesq-Martin ◽  
Arne Friedmann ◽  
Michael Peters ◽  
Jan Behrmann ◽  
Rolf Kilian

Radiocarbon ◽  
1999 ◽  
Vol 41 (1) ◽  
pp. 25-45 ◽  
Author(s):  
Kh A Arslanov ◽  
L A Saveljeva ◽  
N A Gey ◽  
V A Klimanov ◽  
S B Chernov ◽  
...  

We have studied 6 reference sections of bog and lake sediments in the Leningrad and Novgorod provinces to develop a geochronological scale for vegetational and paleoclimatic changes in northwestern Russia during the Late Glacial and Holocene. Every 10-cm layer along the peat and gyttja sections (4–8.5 m thick) was investigated palynologically and the great majority of them were radiocarbon dated. Using the data obtained, standard palynological diagrams were plotted and vegetation history reconstructed. The palynozones indicated on the diagrams were related to the climatic periods and subperiods (phases) of the Blytt-Sernander scheme. On the basis of 230 14C dates obtained, we derived the geochronology of climatic periods and phases, as well as the chronology for the appearance and areal distribution of forest-forming tree species. The uppermost peat layers were dated by using the “bomb effect”. We compared the stages of Holocene vegetation and paleoclimatic changes discovered for the Leningrad and Novgorod provinces with the those obtained for Karelia, which we had studied earlier using the same methodology.


Sign in / Sign up

Export Citation Format

Share Document