Long-period tides observed with a superconducting gravimeter at Syowa Station, Antarctica, and their implication to global ocean tide modeling

1997 ◽  
Vol 103 (1-2) ◽  
pp. 39-53 ◽  
Author(s):  
Tadahiro Sato ◽  
Masatsugu Ooe ◽  
Kazunari Nawa ◽  
Kazuo Shibuya ◽  
Yoshiaki Tamura ◽  
...  
2020 ◽  
Vol 12 (21) ◽  
pp. 3648
Author(s):  
Hongrui Peng ◽  
Hok Sum Fok ◽  
Junyi Gong ◽  
Lei Wang

Ocean tidal backwater reshapes the stage–discharge relation in the fluvial-to-marine transition zone at estuaries, rendering the cautious use of these data for hydrological studies. While a qualitative explanation is traditionally provided by examining a scatter plot of water discharge against water level, a quantitative assessment of long-period ocean tidal effect on the stage–discharge relation has been rarely investigated. This study analyzes the relationship among water level, water discharge, and ocean tidal height via their standardized forms in the Mekong Delta. We found that semiannual and annual components of ocean tides contribute significantly to the discrepancy between standardized water level and standardized water discharge time series. This reveals that the long-period ocean tides are the significant factors influencing the stage–discharge relation in the river delta, implying a potential of improving the relation as long as proper long-period ocean tidal components are taken into consideration. By isolating the short-period signals (i.e., less than 15 days) from land surface hydrology and ocean tides, better consistent stage–discharge relations are obtained, in terms of improving the Pearson correlation coefficient (PCC) from ~0.4 to ~0.8 and from ~0.6 to ~0.9 for the stations closest to the estuary and at the Mekong Delta entrance, respectively. By incorporating the long-period ocean tidal height time series generated from a remotely sensed global ocean tide model into the stage–discharge relation, further refined stage–discharge relations are obtained with the PCC higher than 0.9 for all employed stations, suggesting the improvement of daily averaged water level and water discharge while ignoring the short-period intratidal variability. The remotely sensed global ocean tide model, OSU12, which contains annual and semiannual ocean tide components, is capable of generating accurate tidal height time series necessary for the partial recovery of the stage–discharge relation.


The most precise way of estimating the dissipation of tidal energy in the oceans is by evaluating the rate at which work is done by the tidal forces and this quantity is completely described by the fundamental harmonic in the ocean tide expansion that has the same degree and order as the forcing function. The contribution of all other harmonics to the work integral must vanish. These harmonics have been estimated for the principal M 2 tide using several available numerical models and despite the often significant difference in the detail of the models, in the treatment of the boundary conditions and in the way dissipating forces are introduced, the results for the rate at which energy is dissipated are in good agreement. Equivalent phase lags, representing the global ocean-solid Earth response to the tidal forces and the rates of energy dissipation have been computed for other tidal frequencies, including the atmospheric tide, by using available tide models, age of tide observations and equilibrium theory. Orbits of close Earth satellites are periodically perturbed by the combined solid Earth and ocean tide and the delay of these perturbations compared with the tide potential defines the same terms as enter into the tidal dissipation problem. They provide, therefore, an independent estimate of dissipation. The results agree with the tide calculations and with the astronomical estimates. The satellite results are independent of dissipation in the Moon and a comparison of astronomical, satellite and tidal estimates of dissipation permits a separation of energy sinks in the solid Earth, the Moon and in the oceans. A precise separation is not yet possible since dissipation in the oceans dominates the other two sinks: dissipation occurs almost exclusively in the oceans and neither the solid Earth nor the Moon are important energy sinks. Lower limits to the Q of the solid Earth can be estimated by comparing the satellite results with the ocean calculations and by comparing the astronomical results with the latter. They result in Q > 120. The lunar acceleration n , the Earth’s tidal acceleration O T and the total rate of energy dissipation E estimated by the three methods give astronomical based estimate —1.36 —28±3 —7.2 ± 0.7 4.1±0.4 satellite based estimate —1.03 —24 ±5 — 6.4 ± 1.5 3.6±0.8 numerical tide model — 1.49 —30 ±3 —7.5± 0.8 4.5±0.5 The mean value for O T corresponds to an increase in the length of day of 2.7 ms cy -1 . The non-tidal acceleration of the Earth is (1.8 ± 1.0) 10 -22 s ~2 , resulting in a decrease in the length of day of 0.7 ± 0.4 ms cy -1 and is barely significant. This quantity remains the most unsatisfactory of the accelerations. The nature of the dissipating mechanism remains unclear but whatever it is it must also control the phase of the second degree harmonic in the ocean expansion. It is this harmonic that permits the transfer of angular momentum from the Earth to the Moon but the energy dissipation occurs at frequencies at the other end of the tide’s spatial spectrum. The efficacity of the break-up of the second degree term into the higher modes governs the amount of energy that is eventually dissipated. It appears that the break-up is controlled by global ocean characteristics such as the ocean­-continent geometry and sea floor topography. Friction in a few shallow seas does not appear to be as important as previously thought: New estimates for dissipation in the Bering Sea being almost an order of magnitude smaller than earlier estimates. If bottom friction is important then it must be more uniformly distributed over the world's continental shelves. Likewise, if turbulence provides an important dissipation mechanism it must be fairly uniformly distributed along, for example, coastlines or along continental margins. Such a global distribution of the dissipation makes it improbable that there has been a change in the rate of dissipation during the last few millennium as there is no evidence of changes in ocean volume, or ocean geometry or sea level beyond a few metres. It also suggests that the time scale problem can be resolved if past ocean-continent geometries led to a less efficient breakdown of the second degree harmonic into higher degree harmonics.


2020 ◽  
Author(s):  
Hongbo Tan ◽  
Chongyong Shen ◽  
Guiju Wu

<p>Solid Earth is affected by tidal cycles triggered by the gravity attraction of the celestial bodies. However, about 70% the Earth is covered with seawater which is also affected by the tidal forces. In the coastal areas, the ocean tide loading (OTL) can reach up to 10% of the earth tide, 90% for tilt, and 25% for strain (Farrell, 1972). Since 2007, a high-precision continuous gravity observation network in China has been established with 78 stations. The long-term high-precision tidal data of the network can be used to validate, verifying and even improve the ocean tide model (OTM).</p><p>In this paper, tidal parameters of each station were extracted using the harmonic analysis method after a careful editing of the data. 8 OTMs were used for calculating the OTL. The results show that the Root-Mean-Square of the tidal residuals (M<sub>0</sub>) vary between 0.078-1.77 μgal, and the average errors as function of the distance from the sea for near(0-60km), middle(60-1000km) and far(>1000km) stations are 0.76, 0.30 and 0.21 μgal. The total final gravity residuals (Tx) of the 8 major constituents (M<sub>2</sub>, S<sub>2</sub>, N<sub>2</sub>, K<sub>2</sub>, K<sub>1</sub>, O<sub>1</sub>, P<sub>1</sub>, Q<sub>1</sub>) for the best OTM has amplitude ranging from 0.14 to 3.45 μgal. The average efficiency for O<sub>1</sub> is 77.0%, while 73.1%, 59.6% and 62.6% for K<sub>1</sub>, M<sub>2</sub> and Tx. FES2014b provides the best corrections for O<sub>1</sub> at 12 stations, while SCHW provides the best for K<sub>1 </sub><sub>,</sub>M<sub>2</sub>and Tx at 12,8and 9 stations. For the 11 costal stations, there is not an obvious best OTM. The models of DTU10, EOT11a and TPXO8 look a litter better than FES2014b, HAMTIDE and SCHW. For the 17 middle distance stations, SCHW is the best OTM obviously. For the 7 far distance stations, FES2014b and SCHW model are the best models. But the correction efficiency is worse than the near and middle stations’.</p><p>The outcome is mixed: none of the recent OTMs performs the best for all tidal waves at all stations. Surprisingly, the Schwiderski’s model although is 40 years old with a coarse resolution of 1° x 1° is performing relative well with respect to the more recent OTM. Similar results are obtained in Southeast Asia (Francis and van Dam, 2014). It could be due to systematic errors in the surroundings seas affecting all the ocean tides models. It's difficult to detect, but invert the gravity attraction and loading effect to map the ocean tides in the vicinity of China would be one way.</p>


2005 ◽  
Vol 48 (2) ◽  
pp. 331-341 ◽  
Author(s):  
He-Ping SUN ◽  
Hou-Ze HSU ◽  
Jiang-Cun ZHOU ◽  
Xiao-Dong CHEN ◽  
Jian-Qiao XU ◽  
...  

2007 ◽  
Vol 28 (3) ◽  
pp. 235-255 ◽  
Author(s):  
Alireza Azmoudeh Ardalan ◽  
Hassan Hashemi-Farahani
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document