tidal acceleration
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 11 (18) ◽  
pp. 8624
Author(s):  
Klaus Paschek ◽  
Arthur Roßmann ◽  
Michael Hausmann ◽  
Georg Hildenbrand

Volcanism powered by tidal forces inside celestial bodies can provide enough energy to keep important solvents for living systems in the liquid phase. A prerequisite to calculate such tidal interactions and consequences is depending on simulations for tidal accelerations in a multi-body system. Unfortunately, from measurements in many extrasolar planetary systems, only few physical and orbital parameters are well-known enough for investigated celestial bodies. For calculating tidal acceleration vectors under missing most orbital parameter exactly, a simulation method is developed that is only based on a few basic parameters, easily measurable even in extrasolar planetary systems. Such a method as the one presented here allows finding a relation between the tidal acceleration vectors and potential heating inside celestial objects. Using the values and results of our model approach to our solar system as a “gold standard” for feasibility allowed us to classify this heating in relation to different forms of volcanism. This “gold standard” approach gave us a classification measure for the relevance of tidal heating in other extrasolar systems with a reduced availability of exact physical parameters. We help to estimate conditions for the identification of potential candidates for further sophisticated investigations by more complex established methods such as viscoelastic multi-body theories. As a first example, we applied the procedures developed here to the extrasolar planetary system TRAPPIST-1 as an example to check our working hypothesis.


Author(s):  
Klaus Paschek ◽  
Arthur Roßmann ◽  
Michael Hausmann ◽  
Georg Hildenbrand

Volcanism powered by tidal forces inside celestial bodies can provide enough energy to keep important solvents for living systems in the liquid phase. Moreover, tidal forces and their environmental consequences may strongly influence habitability of planets and other celestial bodies and may result in special forms of live and living conditions. A prerequisite to calculate such tidal interactions and consequences is depending on simulations for tidal accelerations in a multi-body system. Unfortunately, from measurements in many extrasolar planetary systems only few physical and orbital parameters are well enough known for investigated celestial bodies. For calculating tidal acceleration vectors under missing most orbital parameter exactly, a simulation method is developed that is only based on a few basic parameters, easily measurable even in extrasolar planetary systems. Such a method as being presented here, allows finding a relation between the tidal acceleration vectors and potential heating inside celestial objects. Using values and results of our model approach to our solar system as a “gold standard” for feasibility allowed us to classify this heating in relation to different forms of volcanism. This “gold standard” approach gave us a classification measure for the relevance of tidal heating in other extrasolar systems with a reduced availability of exact physical parameters. We would help to estimate conditions for the identification of potential candidates for further sophisticated investigations by more complex established methods like viscoelastic multi-body theories. As a first example, we applied the procedures developed here to the extrasolar planetary system TRAPPIST-1 as an example to check our working hypothesis.


Author(s):  
Peeravit KOAD ◽  
Krisanadej JAROENSUTASINEE

This study utilized the Singular Spectrum Analysis (SSA) approach to perform time series orthogonalization and demonstrated its use by analyzing vertical tidal acceleration and sea level time series from different deep-ocean locations. This method quantifies astronomical variations by using decomposed vertical tidal acceleration to reconstruct and predict deep-ocean tide. The results show that each decomposed vertical tidal acceleration can be associated with the decomposed sea level having at least 5 astronomical variations. Their associated energies can also be used to diagnose the change of the oceanic tide response to tidal acceleration. Performance evaluation also shows that this method can give comparable reconstruction accuracy and slightly better prediction accuracy compared to the harmonic analysis-based method. It is indicated that the proposed method is accurate enough to be applied in a tsunami detection algorithm. The results also indicate that the proposed method is stable enough to provide unpropagated prediction residuals.


Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 104
Author(s):  
Bahram Mashhoon

Relativistic tidal equations are formulated with respect to the rest frame of a central gravitational source and their solutions are studied. The existence of certain relativistic critical tidal currents are thereby elucidated. Specifically, observers that are spatially at rest in the exterior Kerr spacetime are considered in detail; in effect, these fiducial observers define the rest frame of the Kerr source. The general tidal equations for the free motion of test particles are worked out with respect to the Kerr background. The analytic solutions of these equations are investigated and the existence of a tidal acceleration mechanism is emphasized.


Author(s):  
David M. Wittman

Having developed a framework for subsuming gravity into relativity, we examine how gravity behaves as a function of the source mass (Earth, Sun, etc.) and distance from that sourcemass.We develop Newton’s inverse‐square law of gravity, and we examine the consequences in terms of acceleration fields, potentials, escape velocities, and surface gravity. Chapter 17 will build on these ideas to show how orbits are used to probe gravity throughout the universe.We also develop a tool for exposing variations in the acceleration field: the tidal acceleration field in any region is defined as the acceleration field in that region minus the average acceleration. This enables us to restate Newton’s lawof gravity as: the acceleration arrows surrounding any point show a net convergence that is proportional to the density of mass at that point. Chapter 18 will use this to develop a frame‐independent law of gravity.


2017 ◽  
Vol 48 (4) ◽  
pp. 405-416 ◽  
Author(s):  
Leslie V. Morrison ◽  
Catherine Y. Hohenkerk ◽  
F. Richard Stephenson

The errors in the timings of the Almagest occultations are investigated to ascertain what contribution they made to Fotheringham and Longbottom’s 1915 result for the (tidal) acceleration of the Moon. It is found that their result is quite close to the modern value, once the apparent acceleration of the Moon due to the retardation of the Earth’s spin rate is removed.


2017 ◽  
Vol 95 (10) ◽  
Author(s):  
Donato Bini ◽  
Carmen Chicone ◽  
Bahram Mashhoon

Sign in / Sign up

Export Citation Format

Share Document