Accretion of neon, organics, CO2, nitrogen and water from large interplanetary dust particles on the early Earth

2000 ◽  
Vol 48 (11) ◽  
pp. 1117-1137 ◽  
Author(s):  
Michel Maurette ◽  
Jean Duprat ◽  
Cécile Engrand ◽  
Matthieu Gounelle ◽  
Gero Kurat ◽  
...  
2017 ◽  
Vol 114 (43) ◽  
pp. 11327-11332 ◽  
Author(s):  
Ben K. D. Pearce ◽  
Ralph E. Pudritz ◽  
Dmitry A. Semenov ◽  
Thomas K. Henning

Before the origin of simple cellular life, the building blocks of RNA (nucleotides) had to form and polymerize in favorable environments on early Earth. At this time, meteorites and interplanetary dust particles delivered organics such as nucleobases (the characteristic molecules of nucleotides) to warm little ponds whose wet–dry cycles promoted rapid polymerization. We build a comprehensive numerical model for the evolution of nucleobases in warm little ponds leading to the emergence of the first nucleotides and RNA. We couple Earth’s early evolution with complex prebiotic chemistry in these environments. We find that RNA polymers must have emerged very quickly after the deposition of meteorites (less than a few years). Their constituent nucleobases were primarily meteoritic in origin and not from interplanetary dust particles. Ponds appeared as continents rose out of the early global ocean, but this increasing availability of “targets” for meteorites was offset by declining meteorite bombardment rates. Moreover, the rapid losses of nucleobases to pond seepage during wet periods, and to UV photodissociation during dry periods, mean that the synthesis of nucleotides and their polymerization into RNA occurred in just one to a few wet–dry cycles. Under these conditions, RNA polymers likely appeared before 4.17 billion years ago.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 257-260
Author(s):  
Zita Martins

AbstractComets, asteroids, meteorites, micrometeorites, interplanetary dust particles (IDPs), and ultra-carbonaceous Antarctic micrometeorites (UCAMMs) may contain carbonaceous material, which was exogenously delivered to the early Earth. Carbonaceous chondrites have an enormous variety of extra-terrestrial compounds, including all the key compounds important in terrestrial biochemistry. Comets contain several carbon-rich species and, in addition, the hypervelocity impact-shock of a comet can produce several α-amino acids. The analysis of the carbonaceous content of extra-terrestrial matter provides a window into the resources delivered to the early Earth, which may have been used by the first living organisms.


2018 ◽  
Author(s):  
Katherine Burgess ◽  
◽  
David Bour ◽  
Rhonda M. Stroud ◽  
Anais Bardyn ◽  
...  

1985 ◽  
Vol 85 ◽  
pp. 365-368
Author(s):  
S. Ibadov

AbstractThe intensity of solar X-radiation scattered by a comet is calculated and compared to the proper X-radiation of the comet due to impacts of cometary and interplanetary dust particles. Detection of X-radiation of dusty comets at small heliocentric distances (R ≤ 1 a.u.) is found to be an indicator of high-temperature plasma generation as result of grain collisions.


2020 ◽  
Vol 183 ◽  
pp. 104527 ◽  
Author(s):  
E. Hadamcik ◽  
J. Lasue ◽  
A.C. Levasseur-Regourd ◽  
J.-B. Renard

1991 ◽  
Vol 126 ◽  
pp. 397-404 ◽  
Author(s):  
S. A. Sandford

AbstractSamples of interplanetary dust particles (IDPs) have now been collected from the stratosphere, from the Earth’s ocean beds, and from the ice caps of Greenland and Antarctica The most likely candidates for the sources of these particles are comets and asteroids. Comparison of the infrared spectra, elemental compositions, and mineralogy of the collected dust with atmospheric entry models and data obtained from cometary probes and telescopic observations has provided important constraints on the possible sources of the various types of collected dust. These constraints lead to the following conclusions. First, most of the deep sea, Greenland, and Antarctic spherules larger than 100 μm are derived from asteroids. Second, the stratospheric IDPs dominated by hydrated layer-lattice silicate minerals are also most likely derived from asteroids. Finally, the stratospheric IDPs dominated by the anhydrous minerals olivine and pyroxene are most likely from comets. The consequences of these parent body assignments are discussed.


Sign in / Sign up

Export Citation Format

Share Document