cellular life
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 92)

H-INDEX

42
(FIVE YEARS 8)

PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001496
Author(s):  
Zhiyong Bai ◽  
Jianlin Feng ◽  
Gijs A. C. Franken ◽  
Namariq Al’Saadi ◽  
Na Cai ◽  
...  

Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel’s pore. Knockout (KO) of Trpm7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs’ control of cellular Mg2+ homeostasis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Oskar Staufer ◽  
Jacqueline A De Lora ◽  
Eleonora Bailoni ◽  
Alisina Bazrafshan ◽  
Amelie S Benk ◽  
...  

Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1364
Author(s):  
Yuiko Hirata ◽  
Muneyuki Matsuo ◽  
Kensuke Kurihara ◽  
Kentaro Suzuki ◽  
Shigenori Nonaka ◽  
...  

The linkage between the self-reproduction of compartments and the replication of DNA in a compartment is a crucial requirement for cellular life. In our giant vesicle (GV)-based model protocell, this linkage is achieved through the action of a supramolecular catalyst composed of membrane-intruded DNA and amphiphilic acid catalysts (C@DNA) in a GV membrane. In this study, we examined colocalization analysis for the formation of the supramolecular catalyst using a confocal laser scanning fluorescence microscope with high sensitivity and resolution. Red fluorescence spots emitted from DNA tagged with Texas Red (Texas Red-DNA) were observed in a GV membrane stained with phospholipid tagged with BODIPY (BODIPY-HPC). To our knowledge, this is the first direct observation of DNA embedded in a GV-based model protocellular membrane containing cationic lipids. Colocalization analysis based on a histogram of frequencies of “normalized mean deviation product” revealed that the frequencies of positively correlated [lipophilic catalyst tagged with BODIPY (BODIPY-C) and Texas Red-DNA] were significantly higher than those of [BODIPY-HPC and Texas Red-DNA]. This result demonstrates the spontaneous formation of C@DNA in the GV membrane, which serves as a lipo-deoxyribozyme for producing membrane lipids from its precursor.


Inorganics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 83
Author(s):  
Louis J. Delinois ◽  
Omar De León-Vélez ◽  
Adriana Vázquez-Medina ◽  
Alondra Vélez-Cabrera ◽  
Amanda Marrero-Sánchez ◽  
...  

The heme protein cytochrome c (Cyt c) plays pivotal roles in cellular life and death processes. In the respiratory chain of mitochondria, it serves as an electron transfer protein, contributing to the proliferation of healthy cells. In the cell cytoplasm, it activates intrinsic apoptosis to terminate damaged cells. Insight into these mechanisms and the associated physicochemical properties and biomolecular interactions of Cyt c informs on the anticancer therapeutic potential of the protein, especially in its ability to subvert the current limitations of small molecule-based chemotherapy. In this review, we explore the development of Cyt c as an anticancer drug by identifying cancer types that would be receptive to the cytotoxicity of the protein and factors that can be finetuned to enhance its apoptotic potency. To this end, some information is obtained by characterizing known drugs that operate, in part, by triggering Cyt c induced apoptosis. The application of different smart drug delivery systems is surveyed to highlight important features for maintaining Cyt c stability and activity and improving its specificity for cancer cells and high drug payload release while recognizing the continuing limitations. This work serves to elucidate on the optimization of the strategies to translate Cyt c to the clinical market.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abigail Savietto Scholz ◽  
Sarah S. M. Baur ◽  
Diana Wolf ◽  
Marc Bramkamp

Membrane surveillance and repair is of utmost importance to maintain cellular integrity and allow cellular life. Several systems detect cell envelope stress caused by antimicrobial compounds and abiotic stresses such as solvents, pH-changes and temperature in bacteria. Proteins containing an Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH)-domain, including bacterial flotillins have been shown to be involved in membrane protection and membrane fluidity regulation. Here, we characterize a bacterial SPFH-domain protein, YdjI that is part of a stress induced complex in Bacillus subtilis. We show that YdjI is required to localize the ESCRT-III homolog PspA to the membrane with the help of two membrane integral proteins, YdjG/H. In contrast to classical flotillins, YdjI resides in fluid membrane regions and does not enrich in detergent resistant membrane fractions. However, similarly to FloA and FloT from B. subtilis, deletion of YdjI decreases membrane fluidity. Our data reveal a hardwired connection between phage shock response and SPFH proteins.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Caterina Nardella ◽  
Lorenzo Visconti ◽  
Francesca Malagrinò ◽  
Livia Pagano ◽  
Marianna Bufano ◽  
...  

AbstractThe interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein–protein interaction modules, involved in several cellular pathways such as signal transduction, cell–cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.


2021 ◽  
Author(s):  
Oskar Staufer ◽  
Jacqueline A. De Lora ◽  
Eleonora Bailoni ◽  
Alisina Bazrafshan ◽  
Amelie S. Benk ◽  
...  

Empowered by emerging concepts from physics, chemistry, and bioengineering, learning-by-building approaches have found increasing application in the life sciences. Particularly, they are directed to tackle the overarching goal of engineering cellular life from scratch. The SynCell2020/21 conference brought together a diverse group of researchers to share progress and chart the course of this field. Participants identified key steps to design, manipulate, and create cell-like entities, especially those with hierarchical organization and function. This article highlights achievements in the field, including areas where synthetic cells are having socioeconomic and technological impact. Guided by input from early-career researchers, we identify challenges and opportunities for basic science and technological applications of synthetic cells. A key conclusion is the need to build an integrated research community through enhanced communication, resource-sharing, and educational initiatives. Development of an international and interdisciplinary community will enable transformative outcomes and attract the brightest minds to contribute to the field.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Noah B. Bloch ◽  
Thomas E. Wales ◽  
Michelle S. Prew ◽  
Hannah R. Levy ◽  
John R. Engen ◽  
...  

AbstractBAX is a pro-apoptotic member of the BCL-2 family, which regulates the balance between cellular life and death. During homeostasis, BAX predominantly resides in the cytosol as a latent monomer but, in response to stress, transforms into an oligomeric protein that permeabilizes the mitochondria, leading to apoptosis. Because renegade BAX activation poses a grave risk to the cell, the architecture of BAX must ensure monomeric stability yet enable conformational change upon stress signaling. The specific structural features that afford both stability and dynamic flexibility remain ill-defined and represent a critical control point of BAX regulation. We identify a nexus of interactions involving four residues of the BAX core α5 helix that are individually essential to maintaining the structure and latency of monomeric BAX and are collectively required for dimeric assembly. The dual yet distinct roles of these residues reveals the intricacy of BAX conformational regulation and opportunities for therapeutic modulation.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Andrey Rozenberg ◽  
Keiichi Inoue ◽  
Hideki Kandori ◽  
Oded Béjà

Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 22 (14) ◽  
pp. 7562
Author(s):  
Daniela Valenti ◽  
Anna Atlante

Mitochondria are complex intracellular organelles involved in many aspects of cellular life, with a primary role in bioenergy production via oxidative phosphorylation (OXPHOS) [...]


Sign in / Sign up

Export Citation Format

Share Document