Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins

Polymer ◽  
2002 ◽  
Vol 43 (16) ◽  
pp. 4365-4373 ◽  
Author(s):  
Ole Becker ◽  
Russell Varley ◽  
George Simon
2002 ◽  
Vol 740 ◽  
Author(s):  
Pralay Maiti ◽  
Carl A. Batt ◽  
Emmanuel P. Giannelis

ABSTRACTNanocomposites of α-hydroxy polyester, polylactide (PLA) and β-hydroxy polyester, polyhydroxybutyrate (PHB) with layered silicates have been successfully prepared by melt extrusion of PLA and PHB with organically modified montmorillonite (MMT) and fluoromica. The mechanical properties of the nanocomposites are improved compared to the neat polymers. Storage modulus increase up to 40% compared with the pure polymers by adding only 2–3 wt% nanoclay. Biodegradation can be controlled by the choice of the nanoclay used.


Polymer ◽  
2009 ◽  
Vol 50 (15) ◽  
pp. 3478-3487 ◽  
Author(s):  
Yaru Shi ◽  
Takashi Kashiwagi ◽  
Richard N. Walters ◽  
Jeffrey W. Gilman ◽  
Richard E. Lyon ◽  
...  

2008 ◽  
Vol 8 (4) ◽  
pp. 1858-1866 ◽  
Author(s):  
Pralay Maiti ◽  
Jaya P. Prakash Yadav

Copolymer of hydroxybutyrate and hydroxyvalerate, P(HB-HV)/layered silicate or hydroxyapatite nanocomposites were prepared via melt extrusion. The nanostructure, as observed from wide-angle X-ray diffraction and transmission electron microscopy, indicate intercalated hybrids for layered silicates. Hydroxyapatite of nanometer dimension is uniformly distributed in matrix copolymer. The nanohybrids show significant improvement in thermal and mechanical properties of the copolymer as compared to the neat copolymer. The layered silicate nanocomposites exhibit superior mechanical properties as compared to hydroxyapatite nanohybrid. The thermal expansion coefficient is significantly reduced in nanohybrids. The biodegradability of pure copolymer and its nanocomposites were studied at room temperatures under controlled conditions in compost media. The rate of biodegradation of copolymer is enhanced dramatically in the nanohybrids. Hydroxyapatite hybrid shows highest rate of biodegradation. The change in biodegradation is streamlined in terms of nature of nanoparticles used to prepare hybrids.


Sign in / Sign up

Export Citation Format

Share Document