poly ethylene terephthalate
Recently Published Documents


TOTAL DOCUMENTS

5316
(FIVE YEARS 440)

H-INDEX

98
(FIVE YEARS 10)

2022 ◽  
Vol 12 (2) ◽  
pp. 871
Author(s):  
Xiong Xu ◽  
Yaming Chu ◽  
Yi Luo ◽  
Qiaoyun Wu ◽  
Xuyong Chen ◽  
...  

Waste poly(ethylene terephthalate) (PET) drinking bottles and end-of-life scrap rubber tires are common municipal solid wastes discarded and produced every day, which are usually disposed of in landfills and stockpiles, occupying a great quantity of land and causing serious environmental issues. This study aims to first turn waste PET into two value-added derived additives under the chemical treatment of two amines, namely triethylenetetramine (TETA) and ethanolamine (EA), respectively, and then adopt them in association with crumb rubber (CR) to modify virgin bitumen for preparing various rubberized asphalt mixtures. Subsequently, the high- and low-temperature properties of the rubberized binder modified by PET additives (PET-TETA and PET-EA) were comparatively characterized through dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests, while the rutting resistance, fatigue resistance, and dynamic modulus of the further fabricated mixtures were evaluated and validated through mixture tests. The results obtained indicate that 2 wt.% PET-TETA and PET-EA contribute to increase the rutting failure temperature of asphalt rubber from 82.2 °C to 85.5 °C and 84.2 °C, respectively, retaining the high grade of PG 82; the low-temperature grade of asphalt rubber slightly decreased from PG-28 to PG-22 as the additive was added; the rut depth slightly changed from 3.10 mm to nearly 3.70 mm; and PET-TETA exhibits the potential to be capable of extending the fatigue life of asphalt rubber in contrast with PET-EA at different stress levels within 450 kPa. Based on the findings of this study, the developed recycling approach is considered to be applicable to not only alleviate the environmental concerns caused by the landfills and stockpiles of those wastes but also make them valuable for building more durable pavement.


2022 ◽  
Author(s):  
Mehdi Hatami ◽  
Nima Rahnama ◽  
Hassan Karimi-Maleh ◽  
Nader Djafarzadeh ◽  
Mohammad Qandalee ◽  
...  

Abstract In this research, a new generation of ternary nanocomposites based on poly(ethylene terephthalate) (PET), phosphorylated chitosan and surface modified alumina nanoparticles were fabricated in four steps. The phosphorylation process was targeted for the insertion of elemental phosphorus as a flame retardant agent in the final PET nanocomposite. Likewise, environmentally friendly nano-alumina was used for PET matrix to improve the flame retardant properties of PET in collaboration with elemental phosphorus. Alternatively, the presence of alumina nanoparticles in combination with phosphorylated chitosan improved the antibacterial activity of the PET matrix. Furthermore, the effects of the phosphorylated chitosan and alumina nanoparticles on the morphology and thermal properties of nanocomposites were inspected by different approaches. The structure and distribution of the nanoscale particles in PET were analyzed by scanning electron microscopy. In addition, differential scanning calorimetry and thermogravimetric analyses were used for the in-depth evaluation of the thermal properties of prepared nanocomposites.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 325
Author(s):  
Lesly Dasilva Wandji Djouonkep ◽  
Arnaud Kamdem Tamo ◽  
Ingo Doench ◽  
Naomie Beolle Songwe Selabi ◽  
Emmanuel Monga Ilunga ◽  
...  

In this work, the feasibility of replacing petroleum-based poly(ethylene terephthalate) (PET) with fully bio-based copolyesters derived from dimethyl 2,5-thiophenedicarboxylate (DMTD), dimethyl 2,5-dimethoxyterephthalate (DMDMT), and polysaccharide-derived 1,6-hexanediol (HDO) was investigated. A systematic study of structure-property relationship revealed that the properties of these poly(thiophene–aromatic) copolyesters (PHS(20–90)) can be tailored by varying the ratio of diester monomers in the reaction, whereby an increase in DMTD content noticeably shortened the reaction time in the transesterification step due to its higher reactivity as compared with DMDMT. The copolyesters had weight-average molar masses (Mw) between 27,500 and 38,800 g/mol, and dispersity Đ of 2.0–2.5. The different polarity and stability of heterocyclic DMTD provided an efficient mean to tailor the crystallization ability of the copolyesters, which in turn affected the thermal and mechanical performance. The glass transition temperature (Tg) could be tuned from 70–100 °C, while the tensile strength was in a range of 23–80 MPa. The obtained results confirmed that the co-monomers were successfully inserted into the copolyester chains. As compared with commercial poly(ethylene terephthalate), the copolyesters displayed not only enhanced susceptibility to hydrolysis, but also appreciable biodegradability by lipases, with weight losses of up to 16% by weight after 28 weeks of incubation.


2022 ◽  
Author(s):  
Chumeng Fan ◽  
Lei Zhang ◽  
Chenxi Zhu ◽  
Jingjing Cao ◽  
Yunlong Xu ◽  
...  

Developing efficient metal-free catalyst for the glycolysis of waste poly(ethylene terephthalate) (PET) with ethylene glycol (EG) has attracted increasing attention due to the demanding require for high-quality monomer used in...


2022 ◽  
Vol 46 ◽  
pp. 100567
Author(s):  
Pengfei Zhang ◽  
Mei Yang ◽  
Jiyu Li ◽  
Zixu Xie ◽  
Guofeng Li ◽  
...  

2021 ◽  
Author(s):  
Elizabeth Bell ◽  
Ross Smithson ◽  
Siobhan Kilbride ◽  
Jake Foster ◽  
Florence Hardy ◽  
...  

The recent discovery of a hydrolytic enzyme, IsPETase, that can deconstruct poly(ethylene) terephthalate (PET), has sparked great interest in biocatalytic approaches to recycle plastics. Realisation of commercial utility will require the development of robust engineered enzymes that meet the demands of industrial processes. Although rationally engineered variants of PETases have been reported, enzymes that have been experimentally optimised through iterative rounds of directed evolution - the go-to method for engineering industrially useful biocatalysts – have not yet been described. Here, we report the development and implementation of an automated, high-throughput directed evolution platform for engineering polymer degrading enzymes. Evaluation of >13,000 IsPETase variants, applying catalytic activity at elevated temperatures as a primary selection pressure, afforded a HotPETase variant with 21 mutations that has a melting temperature of 82.5C and can therefore operate near or above the glass transition temperature of PET (60-70C). HotPETase can depolymerise semi-crystalline PET more rapidly than previously reported PETases and can selectively deconstruct the PET component of a laminated packaging multi-material. Structural characterisation of HotPETase reveals several interesting features that have emerged during evolution to improve thermotolerance and catalytic performance. Our study establishes laboratory evolution as a platform to engineer useful plastic degrading enzymes to underpin biocatalytic plastic recycling processes.


2021 ◽  
Vol 23 (1) ◽  
pp. 264
Author(s):  
Valentina Pirillo ◽  
Marco Orlando ◽  
Davide Tessaro ◽  
Loredano Pollegioni ◽  
Gianluca Molla

Enzymatic degradation is a promising green approach to bioremediation and recycling of the polymer poly(ethylene terephthalate) (PET). In the past few years, several PET-hydrolysing enzymes (PHEs) have been discovered, and new variants have been evolved by protein engineering. Here, we report on a straightforward workflow employing semi-rational protein engineering combined to a high-throughput screening of variant libraries for their activity on PET nanoparticles. Using this approach, starting from the double variant W159H/S238F of Ideonella sakaiensis 201-F6 PETase, the W159H/F238A-ΔIsPET variant, possessing a higher hydrolytic activity on PET, was identified. This variant was stabilized by introducing two additional known substitutions (S121E and D186H) generating the TS-ΔIsPET variant. By using 0.1 mg mL−1 of TS-ΔIsPET, ~10.6 mM of degradation products were produced in 2 days from 9 mg mL−1 PET microparticles (~26% depolymerization yield). Indeed, TS-ΔIsPET allowed a massive degradation of PET nanoparticles (>80% depolymerization yield) in 1.5 h using only 20 μg of enzyme mL−1. The rationale underlying the effect on the catalytic parameters due to the F238A substitution was studied by enzymatic investigation and molecular dynamics/docking analysis. The present workflow is a well-suited protocol for the evolution of PHEs to help generate an efficient enzymatic toolbox for polyester degradation.


Sign in / Sign up

Export Citation Format

Share Document