Derivation of generalized einstein's equations of gravitation in some noninertial reference frames based on the theory of vacuum mechanics

2021 ◽  
Vol 87 (2) ◽  
pp. 183-207
Author(s):  
Xiao-Song Wang
Author(s):  
Xiao-Song Wang

J. C. Maxwell, B. Riemann and H. Poincar$\acute{e}$ have proposed the idea that all microscopic particles are sink flows in a fluidic aether. Following this research program, a previous theory of gravitation based on a mechanical model of vacuum and a sink flow model of particles is generalized by methods of special relativistic continuum mechanics. In inertial reference frames, we construct a tensorial potential which satisfies the wave equation. Inspired by the equation of motion of a test particle, a definition of a metric tensor of a Riemannian spacetime is introduced. Applying Fock's theorem, generalized Einstein's equations in inertial systems are derived based on some assumptions. These equations reduce to Einstein's equations in case of weak field in harmonic reference frames. In some special non-inertial reference frames, generalized Einstein's equations are derived based on some assumptions. If the field is weak and the reference frame is quasi-inertial, these generalized Einstein's equations reduce to Einstein's equations. Thus, this theory may also explains all the experiments which support the theory of general relativity. There exists some differences between this theory and Einstein's theory of general relativity.


Author(s):  
Xiao-Song Wang

When solving the Einstein's equations for an isolated system of masses, V. Fock introduces harmonic reference frame and obtains an unambiguous solution. Further, he concludes that there exists a harmonic reference frame which is determined uniquely apart from a Lorentz transformation if suitable supplementary conditions are imposed. It is known that wave equations keep the same form under Lorentz transformations. Thus, we speculate that Fock's special harmonic reference frames may have provided us a clue to derive the Einstein's equations in some special class of non-inertial reference frames. Following this clue, generalized Einstein's equations in some special non-inertial reference frames are derived based on the theory of vacuum mechanics. If the field is weak and the reference frame is quasi-inertial, these generalized Einstein's equations reduce to Einstein's equations. Thus, this theory may also explain all the experiments which support the theory of general relativity. There exist some differences between this theory and the theory of general relativity.


Author(s):  
Xiao-Song Wang

J. C. Maxwell, B. Riemann and H. Poincar$\acute{e}$ have proposed the idea that all microscopic particles are sink flows in a fluidic aether. Following this research program, a previous theory of gravitation based on a mechanical model of vacuum and a sink flow model of particles is generalized by methods of special relativistic continuum mechanics. In inertial reference frames, we construct a tensorial potential which satisfies the wave equation. Inspired by the equation of motion of a test particle, a definition of a metric tensor of a Riemannian spacetime is introduced. Applying Fock's theorem, generalized Einstein's equations in inertial systems are derived based on some assumptions. These equations reduce to Einstein's equations in case of weak field in harmonic reference frames. In some special non-inertial reference frames, generalized Einstein's equations are derived based on some assumptions. If the field is weak and the reference frame is quasi-inertial, these generalized Einstein's equations reduce to Einstein's equations. Thus, this theory may also explains all the experiments which support the theory of general relativity. There exists some differences between this theory and Einstein's theory of general relativity.


Author(s):  
Xiao-Song Wang

J. C. Maxwell, B. Riemann and H. Poincar$\acute{e}$ have proposed the idea that all microscopic particles are sink flows in a fluidic aether. Following this research program, a previous theory of gravitation based on a mechanical model of vacuum and a sink flow model of particles is generalized by methods of special relativistic continuum mechanics. In inertial reference frames, we construct a tensorial potential which satisfies the wave equation. Inspired by the equation of motion of a test particle, a definition of a metric tensor of a Riemannian spacetime is introduced. Applying Fock's theorem, generalized Einstein's equations in inertial systems are derived based on some assumptions. These equations reduce to Einstein's equations in case of weak field in harmonic reference frames. There exist some differences between this theory and Einstein's theory of general relativity.


2002 ◽  
Vol 17 (20) ◽  
pp. 2762-2762
Author(s):  
E. GOURGOULHON ◽  
J. NOVAK

It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-"metric" (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this "metric", of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.


Sign in / Sign up

Export Citation Format

Share Document