Lax pairs, symmetries and recursion operators for Toda lattices

1997 ◽  
Vol 40 (3) ◽  
pp. 443-453
Author(s):  
Pantelis A. Damianou
2004 ◽  
Vol 16 (02) ◽  
pp. 175-241 ◽  
Author(s):  
PANTELIS A. DAMIANOU

This paper is mainly a review of the multi-Hamiltonian nature of Toda and generalized Toda lattices corresponding to the classical simple Lie groups but it includes also some new results. The areas investigated include master symmetries, recursion operators, higher Poisson brackets, invariants and group symmetries for the systems. In addition to the positive hierarchy we also consider the negative hierarchy which is crucial in establishing the bi-Hamiltonian structure for each particular simple Lie group. Finally, we include some results on point and Noether symmetries and an interesting connection with the exponents of simple Lie groups. The case of exceptional simple Lie groups is still an open problem.


2021 ◽  
Vol 62 (4) ◽  
pp. 042204
Author(s):  
Gamal Mograby ◽  
Maxim Derevyagin ◽  
Gerald V. Dunne ◽  
Alexander Teplyaev

2019 ◽  
Vol 47 (1) ◽  
pp. 123-126
Author(s):  
I.T. Habibullin ◽  
A.R. Khakimova

The method of constructing particular solutions to nonlinear partial differential equations based on the notion of differential constraint (or invariant manifold) is well known in the literature, see (Yanenko, 1961; Sidorov et al., 1984). The matter of the method is to add a compatible equation to a given equation and as a rule, the compatible equation is simpler. Such technique allows one to find particular solutions to a studied equation. In works (Pavlova et al., 2017; Habibullin et al., 2017, 2018; Khakimova, 2018; Habibullin et al., 2016, 2017, 2018) there was proposed a scheme for constructing the Lax pairs and recursion operators for integrable partial differential equations based on the use of similar idea. A suitable generalization is to impose a differential constraint not on the equation, but on its linearization. The resulting equation is referred to as a generalized invariant manifold. In works (Pavlova et al., 2017; Habibullin et al., 2017, 2018; Khakimova, 2018; Habibullin et al., 2016, 2017, 2018) it is shown that generalized invariant varieties allow efficient construction of Lax pairs and recursion operators of integrable equations. The research was supported by the RAS Presidium Program «Nonlinear dynamics: fundamental problems and applications».


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
S. Y. Lou ◽  
X. B. Hu ◽  
Q. P. Liu

Abstract It is shown that the relativistic invariance plays a key role in the study of integrable systems. Using the relativistically invariant sine-Gordon equation, the Tzitzeica equation, the Toda fields and the second heavenly equation as dual relations, some continuous and discrete integrable positive hierarchies such as the potential modified Korteweg-de Vries hierarchy, the potential Fordy-Gibbons hierarchies, the potential dispersionless Kadomtsev-Petviashvili-like (dKPL) hierarchy, the differential-difference dKPL hierarchy and the second heavenly hierarchies are converted to the integrable negative hierarchies including the sG hierarchy and the Tzitzeica hierarchy, the two-dimensional dispersionless Toda hierarchy, the two-dimensional Toda hierarchies and negative heavenly hierarchy. In (1+1)-dimensional cases the positive/negative hierarchy dualities are guaranteed by the dualities between the recursion operators and their inverses. In (2+1)-dimensional cases, the positive/negative hierarchy dualities are explicitly shown by using the formal series symmetry approach, the mastersymmetry method and the relativistic invariance of the duality relations. For the 4-dimensional heavenly system, the duality problem is studied firstly by formal series symmetry approach. Two elegant commuting recursion operators of the heavenly equation appear naturally from the formal series symmetry approach so that the duality problem can also be studied by means of the recursion operators.


Sign in / Sign up

Export Citation Format

Share Document