Synthesis of isothiocyanatophosphoranes and isothiocyanatophosphonium salts via oxidative addition of thiocyanogen and ligand substitution

Tetrahedron ◽  
1983 ◽  
Vol 39 (24) ◽  
pp. 4175-4181 ◽  
Author(s):  
J. Burski ◽  
J. Kieszkowski ◽  
J. Michalski ◽  
M. Pakulski ◽  
A. Skowronska
2021 ◽  
Author(s):  
Peter Coburger ◽  
Julia Leitl ◽  
Daniel Scott ◽  
Gabriele Hierlmeier ◽  
Ilya G. Shenderovich ◽  
...  

Oxidative addition of the P‒P single bond of an ortho-carborane-derived 1,2-diphosphetane (1,2-C2(PMes)2B10H10) (Mes = 2,4,6-Me3C6H2) to cobalt(-I) and nickel(0) sources affords the first heteroleptic complexes of a carborane-bridged bis(phosphanido) ligand....


1987 ◽  
Vol 6 (4) ◽  
pp. 902-902
Author(s):  
Jerome Silestre ◽  
Maria Calhorda ◽  
Roald Hoffman ◽  
Page Stoutland ◽  
Robert Bergman

2019 ◽  
Author(s):  
Alejandra Gomez-Torres ◽  
J. Rolando Aguilar-Calderón ◽  
Carlos Saucedo ◽  
Aldo Jordan ◽  
Alejandro J. Metta-Magaña ◽  
...  

<p>The masked Ti(II) synthon (<sup>Ket</sup>guan)(<i>η</i><sup>6</sup>-Im<sup>Dipp</sup>N)Ti (<b>1</b>) oxidatively adds across thiophene to give ring-opened (<sup>Ket</sup>guan)(Im<sup>Dipp</sup>N)Ti[<i>κ</i><sup>2</sup>-<i>S</i>(CH)<sub>3</sub><i>C</i>H] (<b>2</b>). Complex <b>2</b> is photosensitive, and upon exposure to light, reductively eliminates thiophene to regenerate <b>1</b> – a rare example of early-metal mediated oxidative-addition/reductive-elimination chemistry. DFT calculations indicate strong titanium π-backdonation to the thiophene π*-orbitals leads to the observed thiophene ring opening across titanium, while a proposed photoinduced LMCT promotes the reverse thiophene elimination from <b>2</b>. Finally, pressurizing solutions of <b>2 </b>with H<sub>2</sub> (150 psi) at 80 °C leads to the hydrodesulfurization of thiophene to give the Ti(IV) sulfide (<sup>Ket</sup>guan)(Im<sup>Dipp</sup>N)Ti(S) (<b>3</b>) and butane. </p>


2020 ◽  
Author(s):  
Matthew Stout ◽  
Brian Skelton ◽  
Alexandre N. Sobolev ◽  
Paolo Raiteri ◽  
Massimiliano Massi ◽  
...  

<p>Three Re(I) tricarbonyl complexes, with general formulation Re(N^L)(CO)<sub>3</sub>X (where N^L is a bidentate ligand containing a pyridine functionalized in the position 2 with a thione or a thiazol-2-ylidene group and X is either chloro or bromo) were synthesized and their reactivity explored in terms of solvent-dependent ligand substitution, both in the ground and excited states. When dissolved in acetonitrile, the complexes bound to the thione ligand underwent ligand exchange with the solvent resulting in the formation of Re(NCMe)<sub>2</sub>(CO)<sub>3</sub>X. The exchange was found to be reversible, and the starting complex was reformed upon removal of the solvent. On the other hand, the complexes appeared inert in dichloromethane or acetone. Conversely, the complex bound to the thiazole-2-ylidene ligand did not display any ligand exchange reaction in the dark, but underwent photoactivated ligand substitution when excited to its lowest metal-to-ligand charge transfer manifold. Photolysis of this complex in acetonitrile generated multiple products, including Re(I) tricarbonyl and dicarbonyl solvato-complexes as well as free thiazole-2-ylidene ligand.</p>


Author(s):  
Tiantian Chen ◽  
Yang Yang ◽  
Liyu Xie ◽  
Haijian Yang ◽  
Guangbin Dong ◽  
...  

<p>We report a Ni(0)-catalyzed cross coupling reaction between simple ketones and 1,3-dienes. A variety of a-allylic alkylation products were formed in an 1,2-addition manner with excellent regioselectivity. Water was found to significantly accelerate this transformation. A HO-Ni-H species generated from oxidative addition of Ni(0) to H<sub>2</sub>O is proposed to play a “dual role” in activating both the ketone and the diene substrate.</p>


2019 ◽  
Author(s):  
Maria Ines Leitao ◽  
Carmen Gonzalez ◽  
Zuzanna Filipiak ◽  
Ana Petronilho

<p>7-methylguanosine, the so-called mRNA cap 0 bears a very labile C8-H bond, due to the formation of an ylide/N-heterocyclic carbene, upon proton loss. The reaction of 7-methylguanosine with Pt(PPh3)4, via C-H oxidative addition, yields a hydrido–PtII carbene complex and this reactivity can be extrapolated to 7,9-dimethylguanine. </p>


Sign in / Sign up

Export Citation Format

Share Document