Ni(0)-Catalyzed α-Allylic Alkylation of Regular Ketones with 1,3-Dienes under pH and Redox-neutral Conditions

Author(s):  
Tiantian Chen ◽  
Yang Yang ◽  
Liyu Xie ◽  
Haijian Yang ◽  
Guangbin Dong ◽  
...  

<p>We report a Ni(0)-catalyzed cross coupling reaction between simple ketones and 1,3-dienes. A variety of a-allylic alkylation products were formed in an 1,2-addition manner with excellent regioselectivity. Water was found to significantly accelerate this transformation. A HO-Ni-H species generated from oxidative addition of Ni(0) to H<sub>2</sub>O is proposed to play a “dual role” in activating both the ketone and the diene substrate.</p>

2019 ◽  
Author(s):  
Tiantian Chen ◽  
Yang Yang ◽  
Liyu Xie ◽  
Haijian Yang ◽  
Guangbin Dong ◽  
...  

<p>We report a Ni(0)-catalyzed cross coupling reaction between simple ketones and 1,3-dienes. A variety of a-allylic alkylation products were formed in an 1,2-addition manner with excellent regioselectivity. Water was found to significantly accelerate this transformation. A HO-Ni-H species generated from oxidative addition of Ni(0) to H<sub>2</sub>O is proposed to play a “dual role” in activating both the ketone and the diene substrate.</p>


2018 ◽  
Author(s):  
Tiantian Chen ◽  
Yang Yang ◽  
Liyu Xie ◽  
Haijian Yang ◽  
Guangbin Dong ◽  
...  

<p>We report a Ni(0)-catalyzed cross coupling reaction between simple ketones and 1,3-dienes. A variety of a-allylic alkylation products were formed in an 1,2-addition manner with excellent regioselectivity. Water was found to significantly accelerate this transformation. A HO-Ni-H species generated from oxidative addition of Ni(0) to H<sub>2</sub>O is proposed to play a “dual role” in activating both the ketone and the diene substrate.</p>


Author(s):  
Tiantian Chen ◽  
Yang Yang ◽  
Liyu Xie ◽  
Haijian Yang ◽  
Guangbin Dong ◽  
...  

<p>We report a Ni(0)-catalyzed cross coupling reaction between simple ketones and 1,3-dienes. A variety of a-allylic alkylation products were formed in an 1,2-addition manner with excellent regioselectivity. Water was found to significantly accelerate this transformation. A HO-Ni-H species generated from oxidative addition of Ni(0) to H<sub>2</sub>O is proposed to play a “dual role” in activating both the ketone and the diene substrate.</p>


2016 ◽  
Vol 52 (45) ◽  
pp. 7295-7298 ◽  
Author(s):  
Eric Omar Asomoza-Solís ◽  
Jonathan Rojas-Ocampo ◽  
Rubén Alfredo Toscano ◽  
Susana Porcel

Arenediazonium salts have been found to behave as efficient electrophiles for the oxidation of gold(i). Starting from anilines, a one pot cross-coupling reaction of anilines with silver acetylides mediated by gold has been developed.


Author(s):  
Alasdair Cooper ◽  
David Leonard ◽  
Sonia Bajo ◽  
Paul Burton ◽  
David Nelson

We show that the energetically-favorable coordination of aldehydes and ketones – but not esters – to nickel(0) during Suzuki-Miyaura reactions can lead either to exquisite selectivity and enhanced reactivity, or to the inhibition<br>of the reaction. Aryl halides where the C-X bond is connected to the same π-system as an aldehyde or ketone functional<br>group undergo unexpectedly rapid oxidative addition, and are selectively cross-coupled during inter- and intramolecular<br>competition reactions. When aldehydes and ketones are present elsewhere, such as in the form of exogenous additives,<br>the cross-coupling reaction is inhibited depending on how strongly the pendant carbonyl group can coordinate to nickel(0). This work advances our understanding of how common functional groups interact with nickel(0) catalysts, and presents synthetic chemists with a tool that can be used to achieve site-selectivity in functionalized molecules. <br>


2019 ◽  
Author(s):  
Alasdair Cooper ◽  
David Leonard ◽  
Sonia Bajo ◽  
Paul Burton ◽  
David Nelson

We show that the energetically-favorable coordination of aldehydes and ketones – but not esters – to nickel(0) during Suzuki-Miyaura reactions can lead either to exquisite selectivity and enhanced reactivity, or to the inhibition<br>of the reaction. Aryl halides where the C-X bond is connected to the same π-system as an aldehyde or ketone functional<br>group undergo unexpectedly rapid oxidative addition, and are selectively cross-coupled during inter- and intramolecular<br>competition reactions. When aldehydes and ketones are present elsewhere, such as in the form of exogenous additives,<br>the cross-coupling reaction is inhibited depending on how strongly the pendant carbonyl group can coordinate to nickel(0). This work advances our understanding of how common functional groups interact with nickel(0) catalysts, and presents synthetic chemists with a tool that can be used to achieve site-selectivity in functionalized molecules. <br>


Sign in / Sign up

Export Citation Format

Share Document