LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition

Tetrahedron ◽  
1998 ◽  
Vol 54 (14) ◽  
pp. 3607-3630 ◽  
Author(s):  
Alexei A. Koshkin ◽  
Sanjay K. Singh ◽  
Poul Nielsen ◽  
Vivek K. Rajwanshi ◽  
Ravindra Kumar ◽  
...  
Author(s):  
Alfonso Soler-Bistué ◽  
Angeles Zorreguieta ◽  
Marcelo E. Tolmasky

Oligonucleotides are key compounds widely used for research, diagnostics, and therapeutics. The rapid increase in oligonucleotide-based applications, together with the progress in nucleic acids research, led to the design of nucleotide analogs that when being part of these oligomers enhance their efficiency, bioavailability, or stability. One of the most useful nucleotide analogs are the first-generation bridge nucleic acids (BNA), also known as locked nucleic acids (LNA), which were used in combination with ribonucleotides, deoxyribonucleotides, or other analogs to construct oligomers with diverse applications. However, there is still room to improve their efficiency, bioavailability, stability, and, importantly, toxicity. A second generation BNA, BNANC (2'-O,4'-aminoethylene bridged nucleic acid), has been recently made available. Oligomers containing these analogs not only showed less toxicity when compared to LNA-containing compounds but in some cases also exhibited higher specificity. Although there are still few applications where BNANC-containing compounds were researched, the results are very promising warranting more efforts in incorporating these analogs for other applications. Furthermore, newer BNA compounds will be introduced in the near future offering great hope to oligonucleotide-based fields of research and applications.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2297 ◽  
Author(s):  
Alfonso Soler-Bistué ◽  
Angeles Zorreguieta ◽  
Marcelo E. Tolmasky

Oligonucleotides are key compounds widely used for research, diagnostics, and therapeutics. The rapid increase in oligonucleotide-based applications, together with the progress in nucleic acids research, has led to the design of nucleotide analogs that, when part of these oligomers, enhance their efficiency, bioavailability, or stability. One of the most useful nucleotide analogs is the first-generation bridged nucleic acids (BNA), also known as locked nucleic acids (LNA), which were used in combination with ribonucleotides, deoxyribonucleotides, or other analogs to construct oligomers with diverse applications. However, there is still room to improve their efficiency, bioavailability, stability, and, importantly, toxicity. A second-generation BNA, BNANC (2′-O,4′-aminoethylene bridged nucleic acid), has been recently made available. Oligomers containing these analogs not only showed less toxicity when compared to LNA-containing compounds but, in some cases, also exhibited higher specificity. Although there are still few applications where BNANC-containing compounds have been researched, the promising results warrant more effort in incorporating these analogs for other applications. Furthermore, newer BNA compounds will be introduced in the near future, offering great hope to oligonucleotide-based fields of research and applications.


1998 ◽  
pp. 455-456 ◽  
Author(s):  
Sanjay K. Singh ◽  
Alexei A. Koshkin ◽  
Jesper Wengel ◽  
Poul Nielsen

ChemInform ◽  
2010 ◽  
Vol 29 (26) ◽  
pp. no-no
Author(s):  
S. K. SINGH ◽  
P. NIELSEN ◽  
A. A. KOSHKIN ◽  
J. WENGEL

2014 ◽  
Vol 47 (6) ◽  
pp. 1768-1777 ◽  
Author(s):  
I. Kira Astakhova ◽  
Jesper Wengel

2012 ◽  
Vol 79 (5) ◽  
pp. 1534-1544 ◽  
Author(s):  
Jan Dolinšek ◽  
Christiane Dorninger ◽  
Ilias Lagkouvardos ◽  
Michael Wagner ◽  
Holger Daims

ABSTRACTMany studies of molecular microbial ecology rely on the characterization of microbial communities by PCR amplification, cloning, sequencing, and phylogenetic analysis of genes encoding rRNAs or functional marker enzymes. However, if the established clone libraries are dominated by one or a few sequence types, the cloned diversity is difficult to analyze by random clone sequencing. Here we present a novel approach to deplete unwanted sequence types from complex nucleic acid mixtures prior to cloning and downstream analyses. It employs catalytically active oligonucleotides containing locked nucleic acids (LNAzymes) for the specific cleavage of selected RNA targets. When combined within vitrotranscription and reverse transcriptase PCR, this LNAzyme-based technique can be used with DNA or RNA extracts from microbial communities. The simultaneous application of more than one specific LNAzyme allows the concurrent depletion of different sequence types from the same nucleic acid preparation. This new method was evaluated with defined mixtures of cloned 16S rRNA genes and then used to identify accompanying bacteria in an enrichment culture dominated by the nitrite oxidizer “CandidatusNitrospira defluvii.”In silicoanalysis revealed that the majority of publicly deposited rRNA-targeted oligonucleotide probes may be used as specific LNAzymes with no or only minor sequence modifications. This efficient and cost-effective approach will greatly facilitate tasks such as the identification of microbial symbionts in nucleic acid preparations dominated by plastid or mitochondrial rRNA genes from eukaryotic hosts, the detection of contaminants in microbial cultures, and the analysis of rare organisms in microbial communities of highly uneven composition.


Sign in / Sign up

Export Citation Format

Share Document