nucleic acid analogs
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 1)

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 541
Author(s):  
Nayanthara U. Dharmaratne ◽  
Alanna R. Kaplan ◽  
Peter M. Glazer

The delivery of cancer therapeutics can be limited by pharmacological issues such as poor bioavailability and high toxicity to healthy tissue. pH-low insertion peptides (pHLIPs) represent a promising tool to overcome these limitations. pHLIPs allow for the selective delivery of agents to tumors on the basis of pH, taking advantage of the acidity of the hypoxic tumor microenvironment. This review article highlights the various applications in which pHLIPs have been utilized for targeting and treating diseases in hypoxic environments, including delivery of small molecule inhibitors, toxins, nucleic acid analogs, fluorescent dyes, and nanoparticles.


2021 ◽  
Vol 49 (4) ◽  
pp. 1828-1839 ◽  
Author(s):  
Guillermo Vasquez ◽  
Graeme C Freestone ◽  
W Brad Wan ◽  
Audrey Low ◽  
Cheryl Li De Hoyos ◽  
...  

Abstract We recently showed that site-specific incorporation of 2′-modifications or neutral linkages in the oligo-deoxynucleotide gap region of toxic phosphorothioate (PS) gapmer ASOs can enhance therapeutic index and safety. In this manuscript, we determined if introducing substitution at the 5′-position of deoxynucleotide monomers in the gap can also enhance therapeutic index. Introducing R- or S-configured 5′-Me DNA at positions 3 and 4 in the oligodeoxynucleotide gap enhanced the therapeutic profile of the modified ASOs suggesting a different positional preference as compared to the 2′-OMe gap modification strategy. The generality of these observations was demonstrated by evaluating R-5′-Me and R-5′-Ethyl DNA modifications in multiple ASOs targeting HDAC2, FXI and Dynamin2 mRNA in the liver. The current work adds to a growing body of evidence that small structural changes can modulate the therapeutic properties of PS ASOs and ushers a new era of chemical optimization with a focus on enhancing the therapeutic profile as opposed to nuclease stability, RNA-affinity and pharmacokinetic properties. The 5′-methyl DNA modified ASOs exhibited excellent safety and antisense activity in mice highlighting the therapeutic potential of this class of nucleic acid analogs for next generation ASO designs.


2020 ◽  
Author(s):  
Asem Alenaizan ◽  
Joshua L Barnett ◽  
Nicholas V Hud ◽  
C David Sherrill ◽  
Anton S Petrov

Abstract The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and RNA.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2866 ◽  
Author(s):  
Aniket Wahane ◽  
Akaash Waghmode ◽  
Alexander Kapphahn ◽  
Karishma Dhuri ◽  
Anisha Gupta ◽  
...  

The field of gene therapy has experienced an insurgence of attention for its widespread ability to regulate gene expression by targeting genomic DNA, messenger RNA, microRNA, and short-interfering RNA for treating malignant and non-malignant disorders. Numerous nucleic acid analogs have been developed to target coding or non-coding sequences of the human genome for gene regulation. However, broader clinical applications of nucleic acid analogs have been limited due to their poor cell or organ-specific delivery. To resolve these issues, non-viral vectors based on nanoparticles, liposomes, and polyplexes have been developed to date. This review is centered on non-viral vectors mainly comprising of cationic lipids and polymers for nucleic acid-based delivery for numerous gene therapy-based applications.


2014 ◽  
Vol 10 ◽  
pp. 1495-1503 ◽  
Author(s):  
Alex Manicardi ◽  
Lucia Guidi ◽  
Alice Ghidini ◽  
Roberto Corradini

Pyrene derivatives can be incorporated into nucleic acid analogs in order to obtain switchable probes or supramolecular architectures. In this paper, peptide nucleic acids (PNAs) containing 1 to 3 1-pyreneacetic acid units (PNA1–6) with a sequence with prevalence of pyrimidine bases, complementary to cystic fibrosis W1282X point mutation were synthesized. These compounds showed sequence-selective switch-on of pyrene excimer emission in the presence of target DNA, due to PNA2DNA triplex formation, with stability depending on the number and positioning of the pyrene units along the chain. An increase in triplex stability and a very high mismatch-selectivity, derived from combined stacking and base-pairing interactions, were found for PNA2, bearing two distant pyrene units.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Shu-ichi Nakano ◽  
Masayuki Fujii ◽  
Naoki Sugimoto

Unnatural nucleosides have been explored to expand the properties and the applications of oligonucleotides. This paper briefly summarizes nucleic acid analogs in which the base is modified or replaced by an unnatural stacking group for the study of nucleic acid interactions. We also describe the nucleoside analogs of a base pair-mimic structure that we have examined. Although the base pair-mimic nucleosides possess a simplified stacking moiety of a phenyl or naphthyl group, they can be used as a structural analog of Watson-Crick base pairs. Remarkably, they can adopt two different conformations responding to their interaction energies, and one of them is the stacking conformation of the nonpolar aromatic group causing the site-selective flipping of the opposite base in a DNA double helix. The base pair-mimic nucleosides can be used to study the mechanism responsible for the base stacking and the flipping of bases out of a nucleic acid duplex.


Sign in / Sign up

Export Citation Format

Share Document