Application of E. Coli aspartate transaminase to amino acid synthesis

1987 ◽  
Vol 28 (32) ◽  
pp. 3745-3746 ◽  
Author(s):  
Jack E. Baldwin ◽  
Robert L. Dyer ◽  
Si C. Ng ◽  
Andrew J. Pratt ◽  
Mark A. Russell
ChemInform ◽  
1988 ◽  
Vol 19 (2) ◽  
Author(s):  
J. E. BALDWIN ◽  
R. L. DYER ◽  
S. C. NG ◽  
A. J. PRATT ◽  
M. A. RUSSELL

2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Melissa Loddeke ◽  
Barbara Schneider ◽  
Tamiko Oguri ◽  
Iti Mehta ◽  
Zhenyu Xuan ◽  
...  

ABSTRACT Salmonella enterica has two CyuR-activated enzymes that degrade cysteine, i.e., the aerobic CdsH and an unidentified anaerobic enzyme; Escherichia coli has only the latter. To identify the anaerobic enzyme, transcript profiling was performed for E. coli without cyuR and with overexpressed cyuR. Thirty-seven genes showed at least 5-fold changes in expression, and the cyuPA (formerly yhaOM) operon showed the greatest difference. Homology suggested that CyuP and CyuA represent a cysteine transporter and an iron-sulfur-containing cysteine desulfidase, respectively. E. coli and S. enterica ΔcyuA mutants grown with cysteine generated substantially less sulfide and had lower growth yields. Oxygen affected the CyuR-dependent genes reciprocally; cyuP-lacZ expression was greater anaerobically, whereas cdsH-lacZ expression was greater aerobically. In E. coli and S. enterica, anaerobic cyuP expression required cyuR and cysteine and was induced by l-cysteine, d-cysteine, and a few sulfur-containing compounds. Loss of either CyuA or RidA, both of which contribute to cysteine degradation to pyruvate, increased cyuP-lacZ expression, which suggests that CyuA modulates intracellular cysteine concentrations. Phylogenetic analysis showed that CyuA homologs are present in obligate and facultative anaerobes, confirming an anaerobic function, and in archaeal methanogens and bacterial acetogens, suggesting an ancient origin. Our results show that CyuA is the major anaerobic cysteine-catabolizing enzyme in both E. coli and S. enterica, and it is proposed that anaerobic cysteine catabolism can contribute to coordination of sulfur assimilation and amino acid synthesis. IMPORTANCE Sulfur-containing compounds such as cysteine and sulfide are essential and reactive metabolites. Exogenous sulfur-containing compounds can alter the thiol landscape and intracellular redox reactions and are known to affect several cellular processes, including swarming motility, antibiotic sensitivity, and biofilm formation. Cysteine inhibits several enzymes of amino acid synthesis; therefore, increasing cysteine concentrations could increase the levels of the inhibited enzymes. This inhibition implies that control of intracellular cysteine levels, which is the immediate product of sulfide assimilation, can affect several pathways and coordinate metabolism. For these and other reasons, cysteine and sulfide concentrations must be controlled, and this work shows that cysteine catabolism contributes to this control.


2020 ◽  
Vol 80 (1) ◽  
pp. 29-42.e10 ◽  
Author(s):  
Boyuan Wang ◽  
Robert A. Grant ◽  
Michael T. Laub

mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Yue Shan ◽  
David Lazinski ◽  
Sarah Rowe ◽  
Andrew Camilli ◽  
Kim Lewis

ABSTRACTPersisters are dormant variants that form a subpopulation of drug-tolerant cells largely responsible for the recalcitrance of chronic infections. However, our understanding of the genetic basis of antibiotic tolerance remains incomplete. In this study, we applied transposon sequencing (Tn-Seq) to systematically investigate the mechanism of aminoglycoside tolerance inEscherichia coli. We constructed a highly saturated transposon library that covered the majority ofE. coligenes and promoter regions and exposed a stationary-phase culture to a lethal dose of gentamicin. Tn-Seq was performed to evaluate the survival of each mutant to gentamicin exposure. We found that the disruption of several distinct pathways affected gentamicin tolerance. We identified 105 disrupted gene/promoter regions with a more than 5-fold reduction in gentamicin tolerance and 37 genes with a more than 5-fold increased tolerance. Functional cluster analysis suggests that deficiency in motility and amino acid synthesis significantly diminished persisters tolerant to gentamicin, without changing the MIC. Amino acid auxotrophs, including serine, threonine, glutamine, and tryptophan auxotrophs, exhibit strongly decreased tolerance to gentamicin, which cannot be restored by supplying the corresponding amino acids to the culture. Interestingly, supplying these amino acids to wild-typeE. colisensitizes stationary-phase cells to gentamicin, possibly through the inhibition of amino acid synthesis. In addition, we found that the deletion of amino acid synthesis genes significantly increases gentamicin uptake in stationary phase, while the deletion of flagellar genes does not affect gentamicin uptake. We conclude that activation of motility and amino acid biosynthesis contributes to the formation of persisters tolerant to gentamicin.IMPORTANCEPersisters are responsible for the recalcitrance of chronic infections to antibiotics. The pathways of persister formation inE. coliare redundant, and our understanding of the mechanism of persister formation is incomplete. Using a highly saturated transposon insertion library, we systematically analyzed the contribution of different cellular processes to the formation of persisters tolerant to aminoglycosides. Unexpectedly, we found that activation of amino acid synthesis and motility strongly contributes to persister formation. The approach used in this study leads to an understanding of aminoglycoside tolerance and provides a general method to identify genes affecting persister formation.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1707
Author(s):  
Wayiza Masamba

α-Amino acids find widespread applications in various areas of life and physical sciences. Their syntheses are carried out by a multitude of protocols, of which Petasis and Strecker reactions have emerged as the most straightforward and most widely used. Both reactions are three-component reactions using the same starting materials, except the nucleophilic species. The differences and similarities between these two important reactions are highlighted in this review.


Author(s):  
Anwen Fan ◽  
Jiarui Li ◽  
Yangqing Yu ◽  
Danping Zhang ◽  
Yao Nie ◽  
...  

1979 ◽  
Vol 18 (7) ◽  
pp. 1109-1111 ◽  
Author(s):  
Barbara Buchholz ◽  
Brigitte Reupke ◽  
Horst Bickel ◽  
Gernot Schultz

Sign in / Sign up

Export Citation Format

Share Document