A novel synthesis of carboxylic acid derivatives having a quaternary carbon at 3-position and functional groups at 4-position from 1-chlorovinyl p-tolyl sulfoxides and acetic acid esters

2002 ◽  
Vol 43 (16) ◽  
pp. 3033-3036 ◽  
Author(s):  
Tsuyoshi Satoh ◽  
Shimpei Sugiyama ◽  
Hiroyuki Ota
1982 ◽  
Vol 60 (18) ◽  
pp. 2295-2312 ◽  
Author(s):  
Humberto Carpio ◽  
Edvige Galeazzi ◽  
Robert Greenhouse ◽  
Angel Guzmán ◽  
Esperanza Velarde ◽  
...  

Several syntheses of the previously unknown 1,2-dihydro-3H-pyrrolo[1,2-a]pyrrole-1-carboxylic acid and various 5- and 6-substituted derivatives thereof have been devised. Some of these processes have been extended to the heretofore unreported 5,6,7,8-tetrahydropyrrolo[1,2-a]pyridine-8-carboxylic acid and 5,6,7,8-tetrahydro-9H-pyrrolo[1,2-a]azepine-9-carboxylic acid derivatives.Two new processes were developed for the conversion of pyrroles into the corresponding pyrrol-2-acetic acid esters. Both processes were based on the use of the readily available ethoxalylpyrrole derivatives as the starting material. One sequence involved saponification of the α-keto ester, followed by Wolff–Kishner reduction of the crude α-keto acid salt and subsequent esterification of the acetic acid derivative thus produced. The second synthesis commenced with reduction of the 2-ethoxalpyrrole with sodium borohydride to the α-hydroxy ester, which was further reduced to the acetic acid ester with an equimolar mixture of triphenylphosphine and triphenylphosphine diiodide.


1999 ◽  
Vol 23 (3) ◽  
pp. 178-179
Author(s):  
Wendy I. Cross ◽  
Kevin R. Flower ◽  
Robin G. Pritchard

The acetic acid esters of 1-(4-methylphenylazo)naphthalen-2-ol 1 and 2-(4-methylphenylazo)-4-methylphenol 3 are prepared and characterised by single crystal X-ray diffraction studies and 13C{1H}NMR spectroscopy; the position of the C(2)13C resonance for the ester is used to predict the position of resonant frequency of the equivalent carbon in the parent alcohols and hence, calculate the position of the azo-hydrazone equilibrium in these compounds.


ChemInform ◽  
2010 ◽  
Vol 25 (7) ◽  
pp. no-no
Author(s):  
R. WINTER ◽  
G. L. GARD ◽  
R. MEWS ◽  
M. NOLTEMEYER

2018 ◽  
Vol 14 ◽  
pp. 373-380 ◽  
Author(s):  
Anna-Lena Dreier ◽  
Andrej V Matsnev ◽  
Joseph S Thrasher ◽  
Günter Haufe

Aldol reactions belong to the most frequently used C–C bond forming transformations utilized particularly for the construction of complex structures. The selectivity of these reactions depends on the geometry of the intermediate enolates. Here, we have reacted octyl pentafluoro-λ6-sulfanylacetate with substituted benzaldehydes and acetaldehyde under the conditions of the silicon-mediated Mukaiyama aldol reaction. The transformations proceeded with high diastereoselectivity. In case of benzaldehydes with electron-withdrawing substituents in the para-position, syn-α-SF5-β-hydroxyalkanoic acid esters were produced. The reaction was also successful with meta-substituted benzaldehydes and o-fluorobenzaldehyde. In contrast, p-methyl-, p-methoxy-, and p-ethoxybenzaldehydes led selectively to aldol condensation products with (E)-configured double bonds in 30–40% yields. In preliminary experiments with an SF5-substituted acetic acid morpholide and p-nitrobenzaldehyde, a low amount of an aldol product was formed under similar conditions.


2015 ◽  
Vol 11 ◽  
pp. 1241-1245 ◽  
Author(s):  
Haruyasu Asahara ◽  
Keita Arikiyo ◽  
Nagatoshi Nishiwaki

N-Methylated amides (N,4-dimethylbenzamide and N-methylcyclohexanecarboxamide) were systematically subjected to chemical transformations, namely, N-tosylation followed by nucleophilic substitution. The amide function was converted to the corresponding carboxylic acid, esters, amides, aldehyde, and ketone upon treatment with hydroxide, alkoxide, amine, diisobutylaluminium hydride and Grignard reagent, respectively. In these transformations, N-methyl-N-tosylcarboxamides behave like a Weinreb amide. Similarly, N-methyl-5-phenylisoxazole-3-carboxamide was converted into 3-functionalized isoxazole derivatives. Since the amide was prepared by the cycloaddition reaction of ethynylbenzene and N-methylcarbamoylnitrile oxide, the nitrile oxide served as the equivalent of the nitrile oxides bearing a variety of functional groups such as carboxy, alkoxycarbonyl, carbamoyl, acyl and formyl moieties.


Sign in / Sign up

Export Citation Format

Share Document