Kinetics of free-surface decomposition of dolomite single crystals and powders analyzed thermogravimetrically by the third-law method

2003 ◽  
Vol 401 (2) ◽  
pp. 139-147 ◽  
Author(s):  
B L'vov
2018 ◽  
Author(s):  
Rudolf Fullybright

Accurate quantification of biological resistance has been impossible so far. Among the various forms of biological resistance which exist in nature, pathogen resistance to drugs is a familiar one. However, as in the case of other forms of resistance, accurately quantifying drug resistance in pathogens has been impossible up to now. Here, we introduce a mathematically-defined and uniform procedure for the absolute quantification of biological resistance deployed by any living organism in the biological realm, including and beyond drug resistance in medicine. The scheme introduced makes possible the exact measurement or computation of the extent to which resistance is deployed by any living organism regardless of kingdom and regardless of the mechanism of resistance involved. Furthermore, the Second Law of Resistance indicating that resistance has the potential to increase to infinite levels, and the Third Law of Resistance indicating that resistance comes to an end once interaction stops, the resistance unit function introduced here is fully compatible with both the Second and Third Laws of Resistance.


1990 ◽  
Vol 55 (2) ◽  
pp. 345-353 ◽  
Author(s):  
Ivan Halaša ◽  
Milica Miadoková

The authors investigated periodic potential changes measured on oriented sections of Al single crystals during spontaneous dissolution in dilute aqueous solutions of KOH, with the aim to find optimum conditions for the formation of potential oscillations. It was found that this phenomenon is related with the kinetics of the reaction investigated, whose rate also changed periodically. The mechanism of the oscillations is discussed in view of the experimental findings.


Sign in / Sign up

Export Citation Format

Share Document