Time resolved reflectivity measurements of silicon solid phase epitaxial regrowth

2000 ◽  
Vol 364 (1-2) ◽  
pp. 228-232 ◽  
Author(s):  
M. Bauer ◽  
M. Oehme ◽  
M. Sauter ◽  
G. Eifler ◽  
E. Kasper
1992 ◽  
Vol 281 ◽  
Author(s):  
T. E. Haynes ◽  
C. Lee ◽  
K. S. Jones

ABSTRACTThe rate of solid-phase epitaxial regrowth has been studied using time-resolved reflectivity in three different types of SiGe/Si epilayers amorphized by ion implantation. In two of these cases, the alloy epilayer contained either 12% or 20% Ge, and the amorphization depth was greater than the thickness (2000 Å) of the SiGe alloy layer. Time-resolved reflectivity measurements showed that the rate of regrowth was not constant in these two cases, but first decreased after passing the SiGe/Si interface, and then increased. The minimum regrowth rate occurred closer to the SiGe/Si interface in the epilayers with the larger Ge atomic fraction. In the third type of sample, the alloy epilayer thickness was ∼7μm, so that the initial epilayer (15% Ge) had the lattice constant of the bulk alloy. Furthermore, amorphization and regrowth occurred entirely within the relaxed alloy layer. In this case, the regrowth rate was constant. The composition dependence of the regrowth-rate transient in the strained layers is discussed in the context of a ‘critical-thickness’ model of strain relaxation.


1984 ◽  
Vol 35 ◽  
Author(s):  
P.K. Vasudev ◽  
A.E. Schmitz ◽  
G.L. Olson

ABSTRACTWe report on a systematic study of the doping profiles resulting from rapid thermal annealing of boron and BF2+-implanted silicon samples that were preamorphized by Si+ implantation. A two-step process consisting of an initial solid phase epitaxial regrowth followed by a brief (~5 sec) high temperature (1050ଌ) anneal produces extremely shallow (<1500Å) junctions with low defect concentrations. The quality of the epitaxial regrowth is very sensitive to implant conditions and impurity effects as deduced from time-resolved reflectivity measurements. Using the best conditions for implantation and solid phase crystallization, we have obtained boron-doped regions with sheet resistivities of 40 Ω/ and BF2-doped regions of resistivity 60 Ω/.


1995 ◽  
Vol 379 ◽  
Author(s):  
M.J. Antonell ◽  
T.E. Haynes ◽  
K.S. Jones

ABSTRACTTransmission electron microscopy has been combined with time-resolved reflectivity and ion channeling to study the effects of regrowth temperature and carbon introduction by ion implantation on the solid phase epitaxial regrowth (SPER) of strained 2000Å, Sio.88Ge0.12/Si alloy films grown by molecular-beam epitaxy (MBE). Relative to the undoped layers, carbon incorporation in the MBE grown SiGe layers prior to regrowth at moderate temperatures (500- 700°C) has three main effects on SPER; these include a reduction in SPER rate, a delay in the onset of strain-relieving defect formation, and a sharpening of the amorphous-crystalline (a/c) interface, i.e., promotion of a two-dimensional (planar) growth front.1 Recrystallization of amorphized SiGe layers at higher temperatures (1 100°C) substantially modifies the defect structure in samples both with and without carbon. At these elevated temperatures threading dislocations extend completely to the Si/SiGe interface. Stacking faults are eliminated in the high temperature regrowth, and the threading dislocation density is slightly higher with carbon implantation.


2011 ◽  
Vol 88 (7) ◽  
pp. 1265-1268
Author(s):  
A. Ohata ◽  
Y. Bae ◽  
T. Signamarcheix ◽  
J. Widiez ◽  
B. Ghyselen ◽  
...  

1989 ◽  
Vol 54 (1) ◽  
pp. 42-44 ◽  
Author(s):  
B. T. Chilton ◽  
B. J. Robinson ◽  
D. A. Thompson ◽  
T. E. Jackman ◽  
J.‐M. Baribeau

2012 ◽  
Author(s):  
Tzu-Lang Shih ◽  
Sheng-Wen Chen ◽  
Chang-Peng Wu ◽  
Chung-Wei Cheng ◽  
Chih-Wei Chien ◽  
...  

1981 ◽  
Vol 4 ◽  
Author(s):  
J. Narayan ◽  
G. L. Olson ◽  
O. W. Holland

ABSTRACTTime-resolved-reflectivity measurements have been combined with transmission electron microscopy (cross-section and plan-view), Rutherford backscattering and ion channeling techniques to study the details of laser induced solid phase epitaxial growth in In+ and Sb+ implanted silicon in the temperature range from 725 to 1500 °K. The details of microstructures including the formation of polycrystals, precipitates, and dislocations have been correlated with the dynamics of crystallization. There were limits to the dopant concentrations which could be incorporated into substitutional lattice sites; these concentrations exceeded retrograde solubility limits by factors up to 70 in the case of the Si-In system. The coarsening of dislocation loops and the formation of a/2<110>, 90° dislocations in the underlying dislocation-loop bands are described as a function of laser power.


2017 ◽  
Vol 122 (10) ◽  
pp. 105702
Author(s):  
M. Prieto-Depedro ◽  
A. Payet ◽  
B. Sklénard ◽  
I. Martin-Bragado

Sign in / Sign up

Export Citation Format

Share Document