solid phase crystallization
Recently Published Documents


TOTAL DOCUMENTS

332
(FIVE YEARS 33)

H-INDEX

38
(FIVE YEARS 3)

2022 ◽  
Vol 16 (1) ◽  
pp. 2270001
Author(s):  
Takuto Mizoguchi ◽  
Takamitsu Ishiyama ◽  
Kenta Moto ◽  
Toshifumi Imajo ◽  
Takashi Suemasu ◽  
...  

Author(s):  
Ryo Oishi ◽  
Koji ASAKA ◽  
Bolotov Leonid ◽  
Noriyuki Uchida ◽  
Masashi Kurosawa ◽  
...  

Abstract A simple method to form ultra-thin (< 20 nm) semiconductor layers with a higher mobility on a 3D-structured insulating surface is required for next-generation nanoelectronics. We have investigated the solid-phase crystallization of amorphous Ge layers with thicknesses of 10−80 nm on insulators of SiO2 and Si3N4. We found that decreasing the Ge thickness reduces the grain size and increases the grain boundary barrier height, causing the carrier mobility degradation. We examined two methods, known effective to enhance the grain size in the thicker Ge (>100 nm). As a result, a relatively high Hall hole mobility (59 cm2/Vs) has been achieved with a 20-nm-thick polycrystalline Ge layer on Si3N4, which is the highest value among the previously reported works.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 187
Author(s):  
Taiki Kataoka ◽  
Yusaku Magari ◽  
Hisao Makino ◽  
Mamoru Furuta

We successfully demonstrated a transition from a metallic InOx film into a nondegenerate semiconductor InOx:H film. A hydrogen-doped amorphous InOx:H (a-InOx:H) film, which was deposited by sputtering in Ar, O2, and H2 gases, could be converted into a polycrystalline InOx:H (poly-InOx:H) film by low-temperature (250 °C) solid-phase crystallization (SPC). Hall mobility increased from 49.9 cm2V−1s−1 for an a-InOx:H film to 77.2 cm2V−1s−1 for a poly-InOx:H film. Furthermore, the carrier density of a poly-InOx:H film could be reduced by SPC in air to as low as 2.4 × 1017 cm−3, which was below the metal–insulator transition (MIT) threshold. The thin film transistor (TFT) with a metallic poly-InOx channel did not show any switching properties. In contrast, that with a 50 nm thick nondegenerate poly-InOx:H channel could be fully depleted by a gate electric field. For the InOx:H TFTs with a channel carrier density close to the MIT point, maximum and average field effect mobility (μFE) values of 125.7 and 84.7 cm2V−1s−1 were obtained, respectively. We believe that a nondegenerate poly-InOx:H film has great potential for boosting the μFE of oxide TFTs.


Author(s):  
Takuto Mizoguchi ◽  
Takamitsu Ishiyama ◽  
Kenta Moto ◽  
Toshifumi Imajo ◽  
Takashi Suemasu ◽  
...  

2021 ◽  
pp. 101261
Author(s):  
Konstantin Romanyuk ◽  
Vladislav Slabov ◽  
Denis Alikin ◽  
Pavel Zelenovskiy ◽  
Maria Rosario P. Correia ◽  
...  

2021 ◽  
Vol 52 (1) ◽  
pp. 69-72
Author(s):  
Mamoru Furuta ◽  
Kenta Shimpo ◽  
Taiki Kataoka ◽  
Daiki Tanaka ◽  
Toshihiro Matsumura ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshifumi Imajo ◽  
Takashi Suemasu ◽  
Kaoru Toko

AbstractPolycrystalline Ge thin films have attracted increasing attention because their hole mobilities exceed those of single-crystal Si wafers, while the process temperature is low. In this study, we investigate the strain effects on the crystal and electrical properties of polycrystalline Ge layers formed by solid-phase crystallization at 375 °C by modulating the substrate material. The strain of the Ge layers is in the range of approximately 0.5% (tensile) to -0.5% (compressive), which reflects both thermal expansion difference between Ge and substrate and phase transition of Ge from amorphous to crystalline. For both tensile and compressive strains, a large strain provides large crystal grains with sizes of approximately 10 μm owing to growth promotion. The potential barrier height of the grain boundary strongly depends on the strain and its direction. It is increased by tensile strain and decreased by compressive strain. These findings will be useful for the design of Ge-based thin-film devices on various materials for Internet-of-things technologies.


Sign in / Sign up

Export Citation Format

Share Document