Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin

Wear ◽  
1997 ◽  
Vol 213 (1-2) ◽  
pp. 29-32 ◽  
Author(s):  
Qunji Xue ◽  
Weimin Liu ◽  
Zhijun Zhang
2011 ◽  
Vol 314-316 ◽  
pp. 143-146
Author(s):  
Xin Feng ◽  
Yan Qiu Xia

AISI 1045 steels were laser-clad with Ni-based powder by CO2 HJ-4 coherent laser. The phase composition of the laser-cladding coating was investigated by means of X-ray diffraction (XRD). The cross-section of the cladding coating was observed using a scanning electron microscopy (SEM). The friction and wear properties of the laser cladding coatings sliding against AISI 52100 steel under the lubrication of liquid paraffin containing various anti-wear and extreme pressure additives were investigated using an Optimol SRV reciprocating motion friction and wear tester. Results showed that the laser-cladding coating considerably decreased coefficient of friction and increased wear resistance in sliding against AISI 52100 steel and attributed to the change in the hardness, phase composition of the laser-cladding coating and tribochemical reactions between the laser-cladding coating and the extreme pressure and anti-wear additives.


2006 ◽  
Vol 416 (1-2) ◽  
pp. 126-133 ◽  
Author(s):  
Feng-hua Su ◽  
Zhao-zhu Zhang ◽  
Fang Guo ◽  
Kun Wang ◽  
Wei-min Liu

2008 ◽  
Vol 51 (4) ◽  
pp. 454-459 ◽  
Author(s):  
Xiaodong Zhou ◽  
Huaqiang Shi ◽  
Shaoling Zhang ◽  
Xun Fu ◽  
Xiaobo Wang

2013 ◽  
Vol 774-776 ◽  
pp. 94-98
Author(s):  
Dao Yuan Pan ◽  
Peng Peng Wu ◽  
Zhong Xue Gao ◽  
Yu Zeng Zhang

Based on actual working conditions and parameters of the hydraulic steering gear, the purpose is optimizing the rubber seal of steering gear by different rubbers mixing technology. Compare the five kinds of rubber with metal of the friction characteristics in dynamic fit, it can obtain a performance excellent rubber real in the specific operation conditions. And then improve the overall service life of the steering gear. It is first prepared the same hardness TPU and PVC and blends that the ratio is 3:7, 5:5and7:3 in this article. The pros and cons of the five rubbers are analyzed in friction and wear properties of the above experimental. The test curve of coefficient friction and wear with time has been done under different load at constant low speed. It determines TPU/PVC = 3:7 blends through friction and wear and wear mechanism of five rubbers with steel comparatively analyses, and the heat resistance and wear resistance of them are better than the other TPU/PVC blends and PVC under oil lubrication conditions.


2012 ◽  
Vol 504-506 ◽  
pp. 969-974 ◽  
Author(s):  
Harald Hetzner ◽  
Stephan Tremmel ◽  
Sandro Wartzack

In sheet bulk metal forming, locally adapted friction properties of the contact tool/workpiece are an appropriate means for the targeted enhancement of the material flow, enabling an improved form filling and lowered forming forces. However, the implementation of desirable friction conditions is not trivial. And further, friction is inseparably linked to wear and damage of the contacting surfaces. This calls for a methodological approach in order to consider tribology as a whole already in the early phases of process layout, so that tribological measures which allow fulfilling the requirements concerning local friction and wear properties of the tool surfaces, can already be selected during the conceptual design of the forming tools. Thin tribological coatings are an effective way of improving the friction and wear properties of functional surfaces. Metal-modified amorphous carbon coatings, which are still rather new to the field of metal forming, allow tackling friction and wear simultaneously. Unlike many other types of amorphous carbon, they have the mechanical toughness to be used in sheet bulk metal forming, and at the same time their friction properties can be varied over wide ranges by proper choice of the deposition parameters. Based on concrete research results, the mechanical, structural and special tribological properties of tungsten-modified hydrogenated amorphous carbon coatings (a-C:H:W) are presented and discussed against the background of the tribological requirements of a typical sheet bulk metal forming process.


Sign in / Sign up

Export Citation Format

Share Document