tio2 nanoparticle
Recently Published Documents


TOTAL DOCUMENTS

608
(FIVE YEARS 142)

H-INDEX

55
(FIVE YEARS 8)

Author(s):  
Montajar Sarkar ◽  
Fahmida Gulshan ◽  
Abu Raihan Md. Harunur Rashid ◽  
Muhammad Hasanuzzaman

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 55
Author(s):  
Shichao Song ◽  
Yijie Li ◽  
Zhuofan Yao ◽  
Jie Li ◽  
Xiangping Li ◽  
...  

The advanced direct laser printing of functional devices with tunable effective index is a key research topic in numerous emerging fields, especially in micro-/nano-optics, nanophotonics, and electronics. Photosensitized nanocomposites, consisting of high-index materials (e.g., titanium dioxide, TiO2) embedded in polymer matrix, are emerging as attractive platforms for advanced additive manufacturing. Unfortunately, in the currently applied techniques, the preparation of optically functionalized structures based on these photosensitized nanocomposites is still hampered by many issues like hydrolysis reaction, high-temperature calcinations, and, especially, the complexity of experimental procedures. In this study, we demonstrate a feasible strategy for fabricating micro-/nanostructures with a flexibly manipulated effective refractive index by incorporating TiO2 nanoparticles in the matrix of acrylate resin, i.e., TiO2-based photosensitized nanocomposites. It was found that the effective refractive index of nanocomposite can be easily tuned by altering the concentration of titanium dioxide nanoparticles in the monomer matrix. For TiO2 nanoparticle concentrations up to 30 wt%, the refractive index can be increased over 11.3% (i.e., altering from 1.50 of pure monomer to 1.67 at 532 nm). Based on such a photosensitized nanocomposite, the grating structures defined by femtosecond laser nanoprinting can offer vivid colors, ranging from crimson to magenta, as observed in the dark-field images. The minimum printing width and printing resolution are estimated at around 70 nm and 225 nm, indicating that the proposed strategy may pave the way for the production of versatile, scalable, and functionalized opto-devices with controllable refractive indices.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Marilou Cadatal-Raduban ◽  
Tomoki Kato ◽  
Yusuke Horiuchi ◽  
Jiří Olejníček ◽  
Michal Kohout ◽  
...  

Vacuum ultraviolet radiation (VUV, from 100 nm to 200 nm wavelength) is indispensable in many applications, but its detection is still challenging. We report the development of a VUV photoconductive detector, based on titanium dioxide (TiO2) nanoparticle thin films. The effect of crystallinity, optical quality, and crystallite size due to film thickness (80 nm, 500 nm, 1000 nm) and type of substrate (silicon Si, quartz SiO2, soda lime glass SLG) was investigated to explore ways of enhancing the photoconductivity of the detector. The TiO2 film deposited on SiO2 substrate with a film thickness of 80 nm exhibited the best photoconductivity, with a photocurrent of 5.35 milli-Amperes and a photosensitivity of 99.99% for a bias voltage of 70 V. The wavelength response of the detector can be adjusted by changing the thickness of the film as the cut-off shifts to a longer wavelength, as the film becomes thicker. The response time of the TiO2 detector is about 5.8 μs and is comparable to the 5.4 μs response time of a diamond UV sensor. The development of the TiO2 nanoparticle thin film detector is expected to contribute to the enhancement of the use of VUV radiation in an increasing number of important technological and scientific applications.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7083
Author(s):  
Benedetta Franzelli ◽  
Philippe Scouflaire ◽  
Nasser Darabiha

The objective of the present work is to show the potential of in situ measurements for the investigation of nanoparticles production in turbulent spray flames. This is achieved by considering multiple diagnostics to characterize the liquid break-up, the reactive flow and the particles production in a spray burner for TiO2 nanoparticle synthesis. The considered liquid fuel is a solution of isopropyl alcohol and titanium tetraisopropoxide (TTIP) precursor. Measurements show that shadowgraphy can be used to simultaneously localize spray and nanoparticles, light scattering allows to characterize the TiO2 nanoparticles distribution in the flame central plane, and spontaneous CH* and OH* chemiluminescences, as well as global light emission results, can be used to visualize the reactive flow patterns that may differ with and without injection of TTIP. Concerning the liquid, it is observed that it is localized in a small region close to the injector nozzle where it is dispersed by the oxygen flow resulting in droplets. The liquid droplets rapidly evaporate and TTIP is quasi-immediately converted to TiO2 nanoparticles. Finally, results show high interactions between nanoparticles and the turbulent eddies.


Langmuir ◽  
2021 ◽  
Author(s):  
N. L. Benbow ◽  
L. Rozenberga ◽  
A. James McQuillan ◽  
M. Krasowska ◽  
D. A. Beattie

2021 ◽  
pp. 118053
Author(s):  
Mahdi Roodbari ◽  
Mohsen Abbasi ◽  
Saeed Arabha ◽  
Ayla Gharedaghi ◽  
Ali Rajabpour

Sign in / Sign up

Export Citation Format

Share Document