New experimental technique for the study and analysis of solid particle erosion mechanisms

Wear ◽  
1999 ◽  
Vol 225-229 ◽  
pp. 1070-1077 ◽  
Author(s):  
M Talia ◽  
H Lankarani ◽  
J.E Talia
Author(s):  
K. Bose ◽  
R. J. K. Wood

Repetitive nanoindentation tests offer a method to examine the time-dependent degradation mechanisms in coatings. In the case of coated systems for tribological and more specifically for erosion resistant applications, repeated indentation cycles can characterise their durability to repeated erodent impact. This paper reports preliminary observations on the response of 13–18 μm thick CVD boron carbide on tungsten carbide substrates to repetitive indentation cycles, at contact loads similar to those generated in previously reported solid-particle erosion tests on these coatings conducted by this laboratory [1].


2012 ◽  
Vol 512-515 ◽  
pp. 451-454 ◽  
Author(s):  
Feng Jiao Liu ◽  
Ming Hao Fang ◽  
Yan Gai Liu ◽  
Zhao Hui Huang

The erosion wear resistance of YSZ ceramics is worth studying because solid particle erosion is one of the main causes of destroying the materials and apparatuses. In this paper, 8YSZ ceramics reinforced by NiCr alloy and Al2O3 particles were pressureless sintered at an optimized sintering condition. The facture toughness reached a maximum value of 4.6 MPa•m 1/2 when the addition of NiCr alloy is 12 vol.%, which was much higher than that of the pure 8YSZ ceramic (2.0 MPa•m 1/2) fabricated in the same condition. Solid particle erosion wear behavior of NiCr-Al2O3-ZrO2 (8Y) ceramics composites was performed by self-designed sand blasting type solid particle erosion wear equipment, using 36# SiC particles as abrasive particles with the 90o erosion angle. The effect of the volume addition of NiCr alloy on the erosion wear of NiCr-Al2O3-ZrO2 (8Y) ceramic composites at room temperature was investigated. The results show that the volume erosion rate of the ceramic composites decreased as the volume addition of the NiCr alloy increasing. Crossing cracks, plastic deformation and minor chipping are the major erosion mechanisms.


2021 ◽  
Author(s):  
Mahdi Takaffoli

Solid particle erosion occurs when small high speed particles impact surfaces. It can be either destructive such as in the erosion of oil pipelines by corrosion byproducts, or constructive such as in abrasive jet machining processes. Two dimensional finite element (FE) models of single rhomboid particles impact on a copper target were developed using two different techniques to deal with the problem of element distortion: (i) element deletion, and (ii) remeshing. It was found that the chip formation and the material pile-up, two phenomena that cannot be simulated using a previously developed rigid-plastic model, could be simulated using the FE models, resulting in a good agreement with experiments performed using a gas gun. However, remeshing in conjunction with a failure model caused numerical instabilities. The element deletion approach also induced errors in mass loss due to the removal of distorted elements. To address the limitations of the FE approach, smoothed particle hydrodynamics (SPH) which can better accommodate large deformations, was used in the simulation of the impact of single rhomboid particles on an aluminum alloy target. With appropriate constitutive and failure parameters, SPH was demonstrated to be suitable for simulating all of the relevant damage phenomena observed during impact experiments. A new methodology was developed for generating realistic three dimensional particle geometries based on measurements of the size and shape parameter distributions for a sample of 150 µm nominal diameter angular aluminum oxide powder. The FE models of these generated particles were implemented in a SPH/FE model to simulate non-overlapping particle impacts. It was shown that the simulated particles produced distributions of crater and crater lip dimensions that agreed well with those measured from particle blasting experiments. Finally, a numerical model for simulating overlapping impacts of angular particles was developed and compared to experimental multi-particle erosion tests, with good agreement. An investigation of the simulated trajectory of the impacting particles revealed various erosion mechanisms such as the micromachining of chips, the ploughing of craters, and the formation, forging and knocking off crater lips which were consistent with previously noted ductile solid particle erosion mechanisms in the literature.


2013 ◽  
Vol 235 ◽  
pp. 383-393 ◽  
Author(s):  
Etienne Bousser ◽  
Ludvik Martinu ◽  
Jolanta E. Klemberg-Sapieha

2021 ◽  
Author(s):  
Mahdi Takaffoli

Solid particle erosion occurs when small high speed particles impact surfaces. It can be either destructive such as in the erosion of oil pipelines by corrosion byproducts, or constructive such as in abrasive jet machining processes. Two dimensional finite element (FE) models of single rhomboid particles impact on a copper target were developed using two different techniques to deal with the problem of element distortion: (i) element deletion, and (ii) remeshing. It was found that the chip formation and the material pile-up, two phenomena that cannot be simulated using a previously developed rigid-plastic model, could be simulated using the FE models, resulting in a good agreement with experiments performed using a gas gun. However, remeshing in conjunction with a failure model caused numerical instabilities. The element deletion approach also induced errors in mass loss due to the removal of distorted elements. To address the limitations of the FE approach, smoothed particle hydrodynamics (SPH) which can better accommodate large deformations, was used in the simulation of the impact of single rhomboid particles on an aluminum alloy target. With appropriate constitutive and failure parameters, SPH was demonstrated to be suitable for simulating all of the relevant damage phenomena observed during impact experiments. A new methodology was developed for generating realistic three dimensional particle geometries based on measurements of the size and shape parameter distributions for a sample of 150 µm nominal diameter angular aluminum oxide powder. The FE models of these generated particles were implemented in a SPH/FE model to simulate non-overlapping particle impacts. It was shown that the simulated particles produced distributions of crater and crater lip dimensions that agreed well with those measured from particle blasting experiments. Finally, a numerical model for simulating overlapping impacts of angular particles was developed and compared to experimental multi-particle erosion tests, with good agreement. An investigation of the simulated trajectory of the impacting particles revealed various erosion mechanisms such as the micromachining of chips, the ploughing of craters, and the formation, forging and knocking off crater lips which were consistent with previously noted ductile solid particle erosion mechanisms in the literature.


Wear ◽  
2005 ◽  
Vol 259 (1-6) ◽  
pp. 135-144 ◽  
Author(s):  
K. Bose ◽  
R.J.K. Wood ◽  
D.W. Wheeler

Sign in / Sign up

Export Citation Format

Share Document