Gill Na+–K+-ATPase activity and hypoosmoregulatory ability of seaward migrating smolts of anadromous Atlantic salmon (Salmo salar), sea trout (Salmo trutta) and Arctic char (Salvelinus alpinus) in the Hals river, northern Norway

Aquaculture ◽  
1998 ◽  
Vol 168 (1-4) ◽  
pp. 279-288 ◽  
Author(s):  
Grete Lysfjord ◽  
Magne Staurnes
1989 ◽  
Vol 46 (5) ◽  
pp. 786-789 ◽  
Author(s):  
Arne J. Jensen ◽  
Bjørn O. Johnsen ◽  
Laila Saksgård

Development time at different temperatures from hatching to 50% feeding was studied in Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) alevins. Live animals were used as food. In both species the development time decreased with increasing temperature, and these relationships were described by power curves. The results were compared with similar data for Arctic char (Salvelinus alpinus). At temperatures above about 8 °C, the development time to 50% feeding was the same for all three species. However, at lower temperatures Atlantic salmon alevins needed more time to reach the stage of initial feeding than did Arctic char. Brown trout were intermediate. These results are in accordance with the known optimum temperature ranges for the three species and their geographic distribution.


2012 ◽  
Vol 69 (4) ◽  
pp. 711-723 ◽  
Author(s):  
Arne J. Jensen ◽  
Bengt Finstad ◽  
Peder Fiske ◽  
Nils Arne Hvidsten ◽  
Audun H. Rikardsen ◽  
...  

A study over a 22-year period of first-time migrants (smolts) of three sympatric salmonids (Atlantic salmon ( Salmo salar ), brown trout ( Salmo trutta ), and Arctic char ( Salvelinus alpinus )) in a watercourse in northern Norway demonstrated that although there was considerable overlap in smolt migration timing among the species, Atlantic salmon migrated first, followed by Arctic char, and finally brown trout. The migration period of Arctic char had a smaller range and less annual variation than those of the two other species, possibly partly related to their more lake-dwelling habitat preference. For all species, water flow was important in explaining day-to-day variations in smolt runs. Water flow was most important for brown trout, change in flow for Atlantic salmon, whereas photoperiod was most important for Arctic char. These results suggest that both age and size of smolts and the timing of the smolt migration have been shaped by the different habitat preferences of these species both in fresh water and sea through local selection.


2014 ◽  
Vol 71 (7) ◽  
pp. 1096-1105 ◽  
Author(s):  
Chantelle M. Penney ◽  
Gordon W. Nash ◽  
A. Kurt Gamperl

In this first study examining the thermal tolerance of adult Arctic char (Salvelinus alpinus) acclimated to seawater, we measured their critical thermal maximum (CTMax) and several cardiorespiratory parameters (oxygen consumption (MO2), heart rate (fH), stroke volume (SV), cardiac output (Q), ventilatory frequency (VF), opercular pressure (PO), and ventilatory effort (VE)) when exposed to a temperature increase of 2 °C·h−1. Further, we directly compared these results with those obtained for the eurythermal Atlantic salmon (Salmo salar) under identical conditions. There was no significant difference in cardiorespiratory values between the two species at their acclimation temperature (9.5–10 °C). In contrast, the slope of the MO2–temperature relationship was lower (by 27%) in the char as compared with that in the salmon, and the char had significantly lower values for maximum fH (by 13%), maximum MO2 (by 35%), absolute metabolic scope (by 39%), and CTMax (approximately 23 versus 26.5 °C, respectively). Although not a focus of the study, preliminary data suggest that interspecific differences in mitochondrial respiration (oxidative phosphorylation), and its temperature sensitivity, may partially explain the difference in thermal tolerance between the two species. These results provide considerable insights into why Atlantic salmon are displacing Arctic char in the current era of accelerated climate change.


Sign in / Sign up

Export Citation Format

Share Document