Parameter estimation for suspended sediment transport processes under random waves

2001 ◽  
Vol 266 (1-3) ◽  
pp. 49-59 ◽  
Author(s):  
O WAI ◽  
Y XIONG ◽  
S ONEIL ◽  
K BEDFORD
2010 ◽  
Vol 34 (2) ◽  
pp. 123-150 ◽  
Author(s):  
E. Nadal-Romero ◽  
D. Regüés

This study investigates the geomorphological dynamics of badland areas in the Araguás catchment (0.45 km2) in the Central Pyrenees. The genesis and development of badlands in the Central Pyrenees is favoured by the presence of Eocene marls and a markedly seasonal climate. The Araguás catchment has been monitored since 2004. Analysis of weathering processes and regolith dynamics showed that alternating freeze-thaw and wetting-drying cycles are the main causes of regolith development and weathering, and effectiveness and intensity of these processes is maximum in winter and summer. Evolution of the badland surfaces is related to regolith moisture level and temperature, closely associated with the season and slope exposure, which cause cyclical variations in regolith physical conditions. The most important effect associated with regolith dynamics is the temporal delay between maximum rainfall erosivity and variation in maximum surface runoff generation, reflected in seasonal differences in sediment transport. The dynamics of weathering and erosion processes affecting badland areas are the principal factors controlling geomorphological development, and the extreme hydrological and sedimentological responses of badlands are the main effects of such morphologies. From a hydrological point of view, badlands increase water production, and flood frequency relative to neighbouring areas; from a sedimentological point of view, suspended sediment transport from badland areas can reach amounts two or three orders of magnitude higher than other nearby environments. Given these results, possible responses of badland dynamics to altered hydroclimatic regime are briefly discussed.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1421-1430 ◽  
Author(s):  
T. Kusuda ◽  
T. Futawatari

Based on the results of field observation in a tidal river, modeling of sediment transport processes is performed and the suspended sediment transport over a long term is simulated with a newly developed procedure, in which the Lagrangian reference frame is used in order to reduce numerical dispersion. The suspended sediment transport in the tidal river is calculated with erosion and deposition of sediments, consolidation of fluid mud to bed mud, and transport by turbidity current. Sediment transport processes concerned with formation and maintenance of turbidity maxima are sufficiently simulated for a fortnightly cycle with the Lagrangian sediment transport model (LSTM).


2009 ◽  
Vol 57 (2) ◽  
pp. 123-135 ◽  
Author(s):  
Eduardo Siegle ◽  
Carlos A. F. Schettini ◽  
Antonio H. F. Klein ◽  
Elírio E. Toldo Jr.

Estuarine hydrodynamics is a key factor in the definition of the filtering capacity of an estuary and results from the interaction of the processes that control the inlet morphodynamics and those that are acting in the mixing of the water in the estuary. The hydrodynamics and suspended sediment transport in the Camboriú estuary were assessed by two field campaigns conducted in 1998 that covered both neap and spring tide conditions. The period measured represents the estuarine hydrodynamics and sediment transport prior to the construction of the jetty in 2003 and provides important background information for the Camboriú estuary. Each field campaign covered two complete tidal cycles with hourly measurements of currents, salinity, suspended sediment concentration and water level. Results show that the Camboriú estuary is partially mixed with the vertical structure varying as a function of the tidal range and tidal phase. The dynamic estuarine structure can be balanced between the stabilizing effects generated by the vertical density gradient, which produces buoyancy and stratification flows, and the turbulent effects generated by the vertical velocity gradient that generates vertical mixing. The main sediment source for the water column are the bottom sediments, periodically resuspended by the tidal currents. The advective salt and suspended sediment transport was different between neap and spring tides, being more complex at spring tide. The river discharge term was important under both tidal conditions. The tidal correlation term was also important, being dominant in the suspended sediment transport during the spring tide. The gravitational circulation and Stokes drift played a secondary role in the estuarine transport processes.


2008 ◽  
Vol 32 (3) ◽  
pp. 243-263 ◽  
Author(s):  
Peng Gao

Suspended sediment at the watershed scale has played a critical role in sediment pollution, water-quality degradation, and the impairment of riparian ecosystems, and thus has been widely studied in many disciplines. This paper synthesizes a variety of methods adopted in suspended sediment monitoring, estimation and modelling for understanding sediment transport processes and determining the suspended sediment load. Methods for sediment monitoring are described in terms of direct and indirect approaches. Estimation of suspended sediment load is commonly achieved by establishing a sediment rating curve. Different approaches toward the establishment of a sediment rating curve are examined thoroughly. Techniques of sediment modelling are summarized via depiction of various hydrological and sediment models at the watershed scale. The paper ends with the discussion of future developments in suspended sediment studies at the watershed scale.


Sign in / Sign up

Export Citation Format

Share Document