Neuronal carbonic anhydrase activity in the central nervous system of the rat: Light- and electron histochemical investigations of the islands of Calleja

1989 ◽  
Vol 85 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Antal Nógrádi ◽  
Elizabeth Király ◽  
András Mihály
1987 ◽  
Vol 62 (4) ◽  
pp. 1582-1588 ◽  
Author(s):  
S. Javaheri

We hypothesized that inhibition of carbonic anhydrase in the central nervous system by acetazolamide should limit the rise in cisternal cerebrospinal fluid (CSF) [HCO3-] observed in metabolic alkalosis. To test this hypothesis, isosmotic isonatremic metabolic alkalosis was produced in two groups of anesthetized, paralyzed, and mechanically ventilated dogs (8 in each group). Group II animals received 50 mg/kg of acetazolamide intravenously 1 h before induction of metabolic alkalosis of 5-h duration. Renal effects of acetazolamide were eliminated by ligation of renal pedicles. In both groups cisternal CSF [Na+] remained relatively constant during metabolic alkalosis. In group I CSF [Cl-] decreased 3.6 and 8.2 meq/l, respectively, 2.5 and 5 h after induction of metabolic alkalosis. Respective increments in CSF [HCO3-] were 3.4 and 6.0 meq/l. In acetazolamide-treated dogs, during metabolic alkalosis, increments in CSF [HCO3-] (4.8 and 7.2 meq/l, respectively, at 2.5 and 5 h) and decrements in CSF [Cl-] (9.1 and 13.3 meq/l) were greater than those observed in group I. We conclude that, in dogs with metabolic alkalosis and bilateral ligation of renal pedicles, acetazolamide impairs CSF regulation of HCO3- and Cl- ions; acetazolamide not only failed to impede HCO3- rise but actually appeared to increase it. The mechanisms for these observations are discussed.


1982 ◽  
Vol 32 (3) ◽  
pp. 321-327 ◽  
Author(s):  
E. Borrelli ◽  
O.K. Langley ◽  
M.S. Ghandour ◽  
J.-P. Delaunoy ◽  
G. Gombos

Sign in / Sign up

Export Citation Format

Share Document