Chapter 12 Techniques for Localizing Contractile Proteins with Fluorescent Antibodies

Author(s):  
Keigi Fujiwara ◽  
Thomas D. Pollard
Keyword(s):  
Author(s):  
T.D. Pollard ◽  
P. Maupin

In this paper we review some of the contributions that electron microscopy has made to the analysis of actin and myosin from nonmuscle cells. We place particular emphasis upon the limitations of the ultrastructural techniques used to study these cytoplasmic contractile proteins, because it is not widely recognized how difficult it is to preserve these elements of the cytoplasmic matrix for electron microscopy. The structure of actin filaments is well preserved for electron microscope observation by negative staining with uranyl acetate (Figure 1). In fact, to a resolution of about 3nm the three-dimensional structure of actin filaments determined by computer image processing of electron micrographs of negatively stained specimens (Moore et al., 1970) is indistinguishable from the structure revealed by X-ray diffraction of living muscle.


1979 ◽  
Vol 42 (05) ◽  
pp. 1634-1637 ◽  
Author(s):  
Thomas D Pollard
Keyword(s):  

1986 ◽  
Vol 6 (2) ◽  
pp. 193-197 ◽  
Author(s):  
J. L. Salisbury ◽  
A. T. Baron ◽  
D. E. Coling ◽  
V. E. Martindale ◽  
M. A. Sanders
Keyword(s):  

1977 ◽  
Vol 9 (11) ◽  
pp. 47-47
Author(s):  
Y. Kira ◽  
K. Ebisawa ◽  
T. Koizumi ◽  
Y. Ito
Keyword(s):  

2000 ◽  
Vol 278 (4) ◽  
pp. R891-R896 ◽  
Author(s):  
G. Supinski ◽  
D. Nethery ◽  
T. M. Nosek ◽  
L. A. Callahan ◽  
D. Stofan ◽  
...  

Recent work indicates that endotoxemia elicits severe reductions in skeletal muscle force-generating capacity. The subcellular alterations responsible for these decrements have not, however, been fully characterized. One possibility is that the contractile proteins per se are altered in endotoxemia and another is that the mechanism by which these proteins are activated is affected. The purpose of the present study was to assess the effects of endotoxin administration on the contractile proteins by examining the maximum calcium-activated force (Fmax) and calcium sensitivity of single Triton-skinned fibers of diaphragm, soleus, and extensor digitorum longus (EDL) muscles taken from control and endotoxin-treated (8 mg/kg) rats. Fibers were mounted on a force transducer and sequentially activated by serial immersion in solutions of increasing Ca2+ concentration (i.e., pCa 6.0 to pCa 5.0); force vs. pCa data were fit to the Hill equation. All fibers were typed at the conclusion of studies using gel electrophoresis. Fmax, the calcium concentration required for half-maximal activation (Ca50), and the Hill coefficient were compared as a function of muscle and fiber type for the control and endotoxin-treated animals. Control group Fmax was similar for diaphragm, soleus, and EDL fibers, i.e., 112.34 ± 2.64, 111.55 ± 3.66, and 104.05 ± 4.33 kPa, respectively. Endotoxin administration reduced the average Fmax for fibers from all three muscles to 80.25 ± 2.30, 72.47 ± 2.97, and 78.32 ± 2.43 kPa, respectively ( P < 0.001 for comparison of each to control). All fiber types in diaphragm, soleus, and EDL muscles manifested similar endotoxin-related reductions in Fmax. The Ca50 and the Hill coefficient for all fiber types and all muscles were unaffected by endotoxin administration. We speculate that these alterations in the intrinsic properties of the contractile proteins represent a major mechanism by which endotoxemia reduces muscle force-generating capacity.


Sign in / Sign up

Export Citation Format

Share Document