Chapter III Approximate Solution of the Random Volterra Integral Equation and an Application to Population Growth Modeling

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jihan Hamaydi ◽  
Naji Qatanani

Two numerical schemes, namely, the Taylor expansion and the variational iteration methods, have been implemented to give an approximate solution of the fuzzy linear Volterra integral equation of the second kind. To display the validity and applicability of the numerical methods, one illustrative example with known exact solution is presented. Numerical results show that the convergence and accuracy of these methods were in a good agreement with the exact solution. However, according to comparison of these methods, we conclude that the variational iteration method provides more accurate results.


2021 ◽  
Vol 54 (1) ◽  
pp. 11-24
Author(s):  
Atanaska Georgieva

Abstract The purpose of the paper is to find an approximate solution of the two-dimensional nonlinear fuzzy Volterra integral equation, as homotopy analysis method (HAM) is applied. Studied equation is converted to a nonlinear system of Volterra integral equations in a crisp case. Using HAM we find approximate solution of this system and hence obtain an approximation for the fuzzy solution of the nonlinear fuzzy Volterra integral equation. The convergence of the proposed method is proved. An error estimate between the exact and the approximate solution is found. The validity and applicability of the HAM are illustrated by a numerical example.


2011 ◽  
Vol 04 (02) ◽  
pp. 263-270 ◽  
Author(s):  
S. Anderyance ◽  
M. Hadizadeh

In this research, we give details of a new numerical method for the approximate solution of a general two-dimensional Volterra integral equation, using the discontinuous wavelet packets e.g. Walsh functions. The double Walsh approximation we have adopted utilizes a simple robust numerical scheme for approximate solution of the equations. The two-dimensional operational matrix of integration for each subinterval [Formula: see text] is explicitly constructed, where m is a power of 2. Finally the reliability and efficiency of the proposed scheme are demonstrated by some numerical results.


2006 ◽  
Vol 6 (3) ◽  
pp. 264-268
Author(s):  
G. Berikelashvili ◽  
G. Karkarashvili

AbstractA method of approximate solution of the linear one-dimensional Fredholm integral equation of the second kind is constructed. With the help of the Steklov averaging operator the integral equation is approximated by a system of linear algebraic equations. On the basis of the approximation used an increased order convergence solution has been obtained.


Sign in / Sign up

Export Citation Format

Share Document