A detailed chemical kinetic reaction mechanism for the oxidation of iso-octane and n-heptane over an extended temperature range and its application to analysis of engine knock

1989 ◽  
Vol 22 (1) ◽  
pp. 893-901 ◽  
Author(s):  
Charles K. Westbrook ◽  
Jürgen Warnatz ◽  
William J. Pitz
2009 ◽  
Vol 156 (1) ◽  
pp. 181-199 ◽  
Author(s):  
Charles K. Westbrook ◽  
William J. Pitz ◽  
Olivier Herbinet ◽  
Henry J. Curran ◽  
Emma J. Silke

Author(s):  
Marina Braun-Unkhoff ◽  
Nadezhda Slavinskaya ◽  
Manfred Aigner

In the present work, the elaboration of a reduced kinetic reaction mechanism is described, which predicts reliably fundamental characteristic combustion properties of two biogenic gas mixtures consisting mainly of hydrogen, methane, and carbon monoxide, with small amounts of higher hydrocarbons (ethane and propane) in different proportions. From the in-house detailed chemical kinetic reaction mechanism with about 55 species and 460 reactions, a reduced kinetic reaction mechanism was constructed consisting of 27 species and 130 reactions. Their predictive capability concerning laminar flame speed (measured at T0=323 K, 373 K, and 453 K, at p=1 bar, 3 bars, and 6 bars for equivalence ratios φ between 0.6 and 2.2) and auto ignition data (measured in a shock tube between 1035 K and 1365 K at pressures around 16 bars for φ=0.5 and 1.0) are discussed in detail. Good agreement was found between experimental and calculated values within the investigated parameter range.


2009 ◽  
Vol 32 (1) ◽  
pp. 221-228 ◽  
Author(s):  
C.K. Westbrook ◽  
W.J. Pitz ◽  
P.R. Westmoreland ◽  
F.L. Dryer ◽  
M. Chaos ◽  
...  

Author(s):  
Marina Braun-Unkhoff ◽  
Nadezhda Slavinskaya ◽  
Manfred Aigner

In the present work, the elaboration of a reduced kinetic reaction mechanism is described which predicts reliably fundamental characteristic combustion properties of two biogenic gas mixtures consisting mainly of hydrogen, methane, and carbon monoxide, with small amounts of higher hydrocarbons (ethane and propane), in different proportions. From the in-house detailed chemical kinetic reaction mechanism with about 55 species and 460 reactions, a reduced kinetic reaction mechanism was constructed consisting of 27 species and 130 reactions. Their predictive capability concerning laminar flame speed (measured at T0 = 323 K, 373 K and 453 K, at p = 1 bar, 3 bar, and 6 bar for equivalence ratios φ between 0.6 and 2.2) and auto ignition data (measured in a shock tube between 1035 and 1365 K at pressures around 16 bar for φ = 0.5 and 1.0) are discussed in detail. Good agreement was found between experimental and calculated values within the investigated parameter range.


Author(s):  
M. A. Mawid ◽  
T. W. Park ◽  
B. Sekar ◽  
C. A. Arana

Progress on development and validation of detailed chemical kinetic mechanisms for the U.S. Air Force JP-8 and JP-7 fuels [1] is reported in this article. Two JP-8 surrogate fuel blends were considered. The first JP-8 surrogate blend contained 12 pure hydrocarbon components, which were 15% n-C10H22, 20% n-C12H26, 15% n-C14H30, 10% n-C16H34, 5% i-C8H18, 5% C7H14, 5% C8H16, 5% C8H10, 5% C10H14, 5% C9H12, 5% C10H12 and 5% C11H10 by weight. The second JP-8 surrogate blend contained 4 components, which were 45% n-C12H26, 20% n-C10H22, 25% C10H14, and 10% C7H14 by weight. A five-component surrogate blend for JP-7 was also considered. The JP-7 surrogate blend components were 30% n-C10H22, 30% n-C12H26, 30% C10H20, 5% i-C8H18, and 5% C7H8 by weight. The current status of the JP-8 and JP-7 mechanisms is that they consist of 221 species and 1483 reactions and 205 species and 1438 reactions respectively. Both JP-8 and JP-7 mechanisms were evaluated using a lean fuel-air mixture, over a temperature range of 900–1050 K and for atmospheric pressure conditions by predicting autoignition delay times and comparing them to the available experimental data for Jet-A fuel. The comparisons demonstrated the ability of the 12-component JP-8 surrogate fuel blend to predict the autoignition delay times over a wider range of temperatures than the 4-component JP-8 surrogate fuel blend. The 5-component JP-7 surrogate blend predicted autoignition delay times lower than those of JP-8 blends and Jet-A fuel. The JP-8 and JP-7 mechanisms predictions, however, showed less agreement with the measurements towards the lower end of the temperature range (i.e., less than 900 K). Therefore, low temperature oxidation reactions and the sensitivities of the autoignition delays to reaction rate constants are still needed.


Fuel ◽  
2020 ◽  
Vol 269 ◽  
pp. 117446 ◽  
Author(s):  
N. Zettervall ◽  
C. Fureby ◽  
E.J.K. Nilsson

2011 ◽  
Vol 158 (4) ◽  
pp. 742-755 ◽  
Author(s):  
C.K. Westbrook ◽  
C.V. Naik ◽  
O. Herbinet ◽  
W.J. Pitz ◽  
M. Mehl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document