Fuel Blend
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 163)

H-INDEX

23
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Chidambaranathan Bibin ◽  
Ponnusamy Kumarasami Devan ◽  
Soundararajan Gopinath ◽  
Thulasiram Ramachandran

Abstract The increasing demand for energy consumption because of the growing population and environmental concerns has motivated the researchers to ponder about alternative fuel that could replace diesel fuel. A new fuel should be cheaply available, clean, efficient, and environmentally friendly. In this paper, the engine operated with neat punnai oil blends with diesel were investigated at various engine load conditions, keeping neat punnai oil and diesel as base fuels. The performance indicators such as Brake Specific Energy consumption (BSEC), Brake thermal efficiency (BTE) and Exhaust gas temperature (EGT); emission indicators such as Carbon monoxide (CO), Oxides of Nitrogen (NOx), smoke opacity; and combustion parameters like cylinder pressure and heat release rate were examined. The Brake thermal efficiency of diesel is 29.2% whereas, it was lower for neat punnai oil and its blends at peak load conditions. Concerning the environmental aspect, Oxides of Nitrogen emission showed a decreasing trend with higher smoke emissions for Punnai oil blends. Detailed combustion analysis showed that on smaller concentrations of punnai oil in the fuel blend, the duration of combustion has improved significantly. However, for efficiency and emissions, the P20 (20% Punnai oil and 80% Diesel) blend performs similar to that of diesel compared to all other blending combinations. When compared with diesel, the P20 blend shows an improvement in BSEC by 26.37%. It also performs closer in HC emission, a marginal increase in smoke opacity of 4% with reduced NOx and CO2 emission of 7.9% and 4.65% respectively. Power loss was noticed when neat punnai oil and higher blends were used due to the high density and low calorific value of punnai oil blends which leads to injecting more fuel for the same pump stroke.


2022 ◽  
pp. 009524432110588
Author(s):  
Meenakshi Halada Nandakrishnan ◽  
Shruthi Balakrishna ◽  
Preeti Nair

Alcohols are increasingly being looked upon as the most viable alternative to the conventional sources of energy. Methanol is the first member of the alcohol family and can be easily synthesized from syngas. It is an attractive blend to gasoline due to its advantageous properties. There is a necessity to make sure that the infrastructure is ready to adapt these alternative fuels. Hence, the aim of this study is to assess the degradation of widely used thermoplastics in fuel tanks, pipes, and the fuel injection system, namely, polytetrafluoroethylene (PTFE), polyethyleneterephthalate (PET), and high density polyethylene (HDPE) post exposure to methanol–gasoline blends (P100, M15, and M30) for a period of 4, 10, and 30 days. The effects of the exposure were examined by comparing changes in gain/loss of mass, hardness, elongation, and tensile strength. The surface morphology changes of the polymeric coupons were characterized by scanning electron microscopy and their elemental analysis was done by energy dispersive X-ray spectroscopy. The studied materials were found to gain mass in the order HDPE > PTFE >PET. The decrease in hardness was found to be more in HDPE followed by PTFE and PET. PTFE and PET showed reduction in strength but an increase in tensile strength was observed for HDPE post exposure to fuel blend. Highest change in elongation was found in HDPE followed by PTFE and PET. The changes were found to be the least in P100 followed by M15 and maximum in M30 blends for all immersion periods.


Author(s):  
A. Sivakumar ◽  
R. Sathiyamoorthi ◽  
V. Jayaseelan ◽  
R. Ashok Gandhi ◽  
K. Sudhakar

Mineral oil has been used as an insulating fluid in the power industry. However, surplus waste oil poses serious environmental threats because of disposal concerns. Waste to biofuel is an excellent way to deal with waste material from various sources. In this study, the trans-esterification method was utilised to convert the waste-insulating mineral oil into a quality bio-fuel. Waste-insulating transformer oil was converted to biodiesel, and it was tested according to ASTM standards. Four different blends of waste-insulating biodiesel with diesel in 25 per cent (WIOBD25), 50 per cent (WIOBD50), 75 per cent (WIOBD75), and 100 per cent fractions (WIOBD100), were used for performance testing in a direct injection compression ignition (DICI) engine. The combustion parameters such as BSFC, EGT, and BTE were evaluated with varying crank angles and constant engine speed. The waste-insulating biodiesel performance results are then compared with diesel fuel. BSFC increased as the biofuel mixture in diesel was raised, and the brake thermal efficiency (BTE) was significantly reduced compared to diesel for all WIOBD diesel mixtures. Due to the combustion process, a high pressure and heat release rate (HRR) were noticed inside the cylinder with the waste-insulating oil-derived biodiesel samples. WIOBD biodiesel blends produced lower levels of hydrocarbon, carbon monoxide, and smoke emissions than diesel fuel, but greater levels of nitrogen oxides (NOx) were produced than diesel fuel. In addition to lower emissions combined with improved engine performance, the WIOBD25 fuel blend has been found to be experimentally optimal for practical application. As a result, the test findings indicated that WIOBD biodiesel might be used as a substitute for conventional diesel fuel.


2021 ◽  
Author(s):  
Chao'en Li ◽  
May-Suan Lee ◽  
Andrew Hoadley ◽  
Jim Patel ◽  
Seng Lim ◽  
...  

Abstract The global initiative to find alternative fuel sources to fossil fuels is an ongoing process. As such, bioethanol is used as a fuel blend with petrol. However, large number of solid wastes is produced from ethanol plants sourcing from grain and inedible plant wastes, for example, WDGS (wet distiller’s grain with soluble) and DDGS (dry distiller’s grain with soluble) produced from ethanol plants using corn. This study investigates alternative methods for using these co-products through combustion and anaerobic digestion. Process simulation and economic analysis were conducted using current market prices to evaluate the viability of the processes. Products in the form of energy are produced. Optimization of the corn ethanol plant was also explored for re-using the heat and electricity produced in those processes. The profits of combustion and anaerobic digestion were compared. It was found that these processes will supply more viable options to simply selling the grain as feed for livestock. The anaerobic digestion of WDGS to produce electricity scenario was found to have the biggest profit among the four scenarios which can bring the annual income of 14.1 million Australian dollar to the ethanol plant. An environmental analysis of the CO2 emissions was also conducted. Using the Australian state emission factor, the amount of CO2 offset through both combustion and anaerobic digestion can be seen. The anaerobic digestion of WDGS to supply heat to the plant was proved having the largest CO2 abatement with the value of 0.58 kg-CO2e/L-EtOH.


Author(s):  
Rishabha Saraf ◽  
Anshul Gangele

Over the past two centuries, energy needs have risen dramatically, particularly due to the transportation and industry sectors. However, the main made fuels like (fossil fuels) are polluting and their reserves are limited. Governments & research organization work together for make the use of renewable resources a priority and reduce irresponsible use of natural supplies through increased conservation. The energy crisis is a broad is biggest problem in world. Most people don't realize to their reality unless the price of fuel at the pump goes up or there are lines at the fuel station. Plastics waste fuel is sustainable and futuristic solution of fossil fuel as well as biggest problem of waste management of plastic waste can solve by this fuel. In thesis we prepare the plastic waste fuel by application of paralysis process in this process use low, medium and high grade of plastic and heated with limited amount of oxygen melt the plastic. The result of paralysis finds of liquid fuel and flammable gas. This fuel can be used as a blend in diesel with a proportion of B0D100, B10D90 B20D80, & B30D70 where B tent to blend of plastic fuel and D tend to diesel as if B0D100 means blend 0% and diesel 100%. These blend run diesel engine. The blends are in 10%, 20% & 30% plastic paralysis oil with standard diesel fuel. For experiment simultaneous optimization used a method called “Taguchi” used in the engine such as injection pressure and load condition. Taguchi Method of Optimization is a simplest method of optimizing experimental parameters in less number of trials.


Author(s):  
Abdul Rahman ◽  
Asnawi Asnawi ◽  
Reza Putra ◽  
Hagi Radian ◽  
Tri Waluyo

Bioethanol characteristics can be used as an alternative fuel to spark-ignition (SI) engines to reduce emissions. This experiment evaluates the production of emissions for SI engines using hydrogen enrichment in the gasoline-bioethanol fuel blends. The fraction of bioethanol fuel blend was added to the gasoline fuel of 10% by volume and hydrogen fuel produced by the electrolysis process with a dry cell electrolyzer. The NaOH was used as an electrolyte which is dissolved in water of 5% by a mass fraction. The test is conducted using a single-cylinder 155cc gasoline engine with sensors and an interface connected to a computer to control loading and record all sensor variables in real-time. Hydrogen produced from the electrolysis reactor is injected through the intake manifold using two injectors, hydrogen injected simultaneously at a specific time with a gasoline-bioethanol fuel. The test was conducted with variations of engine speeds. The emission product of ethanol--H2 (BE10+H2) was an excellent candidate as a new alternative of fuel solution in the future. The engasolinerichment of hydrogen increased the flame speed and generated a stable combustion reaction. The hydrogen enrichment produced CO2 emission due to the unavailability of carbon content in hydrogen fuel. As a result, the C/H ratio is lower than for mixed fuels.


Author(s):  
Moch Miftahul Arifin ◽  
Nasrul Ilminnafik ◽  
Muh. Nurkoyim Kustanto ◽  
Agus Triono

Technological developments in diesel engines require improvements to the fuel injection system to meet the criteria for economical, high-power and efficient combustion and meet environmental regulatory standards. One method that has a lot of interest is changing the characteristics of the fuel, with the aim of producing optimal combustion. Spray characteristics have a big role in determining the quality of combustion in diesel engines. A good spray can improve the quality of fuel atomization and the homogeneity of the air-fuel mixture in the combustion chamber so that it can produce good engine performance and low emissions. This study aims to determine the effect of a diesel-biodiesel (Calophyllum inophyllum)-gasoline blendandfuel heating on the spray characteristics. The research was conducted with variations in composition (B0, B100, B30, B30G5 and B30G10) and fuel heating (40, 60, 80, and 100 °C). Fuel injected atapressure of 17 MPa in to a pressure chamber of 3 bar. The spray formed was recorded with a high-speed camera of 480 fps (resolution 224x168 pixel). In B100 biodiesel, the highest viscosity and density cause high spray tip penetration, small spray angle, and high spray velocity. The addition of diesel oil, gasoline, and heating fuel reduces the viscosity and density so that the spray tip penetration decreases, the spray angle increases and the velocity of spray decreases.


Sign in / Sign up

Export Citation Format

Share Document