Effect of flanking matrix attachment regions on the expression of microinjected transgenes during preimplantation development of mouse embryos

1999 ◽  
Vol 51 (1) ◽  
pp. 423 ◽  
Author(s):  
B Pintado ◽  
A Gutiérrez-Adán
1995 ◽  
Vol 41 (2) ◽  
pp. 232-238 ◽  
Author(s):  
Yugong Ho ◽  
Karen Wigglesworth ◽  
John J. Eppig ◽  
Richard M. Schultz

Reproduction ◽  
1984 ◽  
Vol 71 (2) ◽  
pp. 467-473 ◽  
Author(s):  
H. Spielmann ◽  
U. Jacob-Mueller ◽  
P. Schulz ◽  
A. Schimmel

Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 363-372
Author(s):  
A. Hogan ◽  
S. Heyner ◽  
M.J. Charron ◽  
N.G. Copeland ◽  
D.J. Gilbert ◽  
...  

The glucose transporter (GLUT) isoforms responsible for glucose uptake in early mouse embryos have been identified. GLUT 1, the isoform present in nearly every tissue examined including adult brain and erythrocytes, is expressed throughout preimplantation development. GLUT 2, which is normally present in adult liver, kidney, intestine and pancreatic beta cells is expressed from the 8-cell stage onward. GLUT 4, an insulin-recruitable isoform, which is expressed in adult fat and muscle, is not expressed at any stage of preimplantation development or in early postimplantation stage embryos. Genetic mapping studies of glucose transporters in the mouse show that Glut-1 is located on chromosome 4, Glut-2 on chromosome 3, Glut-3 on chromosome 6, and Glut-4 on chromosome 11.


2018 ◽  
Author(s):  
Thorsten Boroviak ◽  
Giuliano G Stirparo ◽  
Sabine Dietmann ◽  
Irene Hernando-Herraez ◽  
Hisham Mohammed ◽  
...  

AbstractThe mouse embryo is the canonical model for mammalian preimplantation development. Recent advances in single-cell profiling allow detailed analysis of embryogenesis in other eutherian species, including human, to distinguish conserved from divergent regulatory programs and signalling pathways in the rodent paradigm. Here, we identify and compare transcriptional features of human, marmoset and mouse embryos by single-cell RNA-seq. Zygotic genome activation correlates with the presence of Polycomb Repressive Complexes in all three species, while ribosome biogenesis emerges as a predominant attribute in primate embryos, supporting prolonged translation of maternally deposited RNAs. We find that transposable element expression signatures are species-, stage- and lineage-specific. The pluripotency network in the primate epiblast lacks certain regulators operative in mouse, but encompasses WNT components and genes associated with trophoblast specification. Sequential activation of GATA6, SOX17 and GATA4 markers of primitive endoderm identity is conserved in primates. Unexpectedly, OTX2 is also associated with primitive endoderm specification in human and nonhuman primate blastocysts. Our cross-species analysis demarcates both conserved and primate-specific features of preimplantation development and underscores the molecular adaptability of early mammalian embryogenesis.


2005 ◽  
Vol 17 (9) ◽  
pp. 125
Author(s):  
S. Jansen ◽  
M. Pantaleon ◽  
P. L. Kaye

Cleavage stage embryos consume pyruvate before switching to glucose as the major energy substrate for blastocyst formation. This switch is conditional, because freshly collected two-cell embryos form blastocysts without glucose by increasing pyruvate consumption. Zygotes cultured without glucose cannot adapt in this way and degenerate, but paradoxically demonstrate upregulation of the H+-monocarboxylate transporter protein, MCT2, in morulae. MCT2 is a high affinity transporter implicated in redox shuttling for peroxisomal beta-oxidation of fatty acids.3 Fatty acids may provide energy for embryos2 but peroxisomal beta-oxidation has not been explored in preimplantation development. Rat oocytes possess a primitive peroxisomal system.1 The possibility therefore exists that MCT2 may also be linked to fatty acid metabolism in embryos. Peroxisome proliferator activated receptor (PPAR)-alpha is a transcriptional regulator of fatty acid transport and beta-oxidation, and controls expression of catalase, a major peroxisomal enzyme. This investigation explores the role of PPAR-α in the glucose-driven control of MCT2 expression in mouse embryos. Zygotes (18 h post-hCG) were cultured in KSOM in the presence or absence of glucose, or KSOM with selective agonists of PPAR-α, fenofibrate and WY 14643. Expression of MCT2 and catalase was analysed by confocal laser scanning immunohistochemistry and western blot. Results confirm the presence of catalase throughout preimplantation development. With glucose, cytoplasmic immunoreactivity for catalase was punctate and diffuse, while MCT2 was localised to apical membranes of outer blastomeres in morulae. Without glucose, catalase and MCT2 expression were increased with notable localisation of catalase to nuclei. This response was reflected in morulae cultured in the presence of glucose and PPAR-α agonists. These data suggest that PPAR-α plays a role in controlling catalase and MCT2 expression in embryos, and that conditions in the absence of glucose are more conducive for PPAR-α activation. (1)Figueroa C, Kawada ME, Veliz LP, Hidalgo U, Barros C, Gonzalez S and Santos MJ (2000) Peroxisomal proteins in rat gametes. Cell Biochem Biophys 32, 259–268.(2)Hewitson LC, Martin KL and Leese HJ (1996) Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses. Mol Reprod Dev 43, 323–330.(3)McClelland GB, Khanna S, Gonzalez GF, Butz CE and Brooks GA (2003) Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system? Biochem Biophys Res Commun 304, 130–135.


Sign in / Sign up

Export Citation Format

Share Document