System identification of dynamic closed-loop control of total peripheral resistance by arterial and cardiopulmonary baroreceptors

2001 ◽  
Vol 49 (3-10) ◽  
pp. 167-170
Author(s):  
A. Nikolai Aljuri ◽  
Nenad Bursac ◽  
Robert Marini ◽  
Richard J. Cohen
2004 ◽  
Vol 287 (5) ◽  
pp. H2274-H2286 ◽  
Author(s):  
Nikolai Aljuri ◽  
Robert Marini ◽  
Richard J. Cohen

This is the first study able to examine and delineate the actual actions of the physiological mechanisms responsible for the dynamic couplings between cardiac output (CO), arterial pressure (Pa), right atrial pressure (PRA), and total peripheral resistance (TPR) in an individual subject without altering the underlying regulatory mechanisms. Eight conscious male sheep were used, where both types of baroreceptors were independently exposed to simultaneous beat-to-beat pressure perturbations under intact closed-loop conditions while CO, Pa, PRA, and TPR were measured. We applied the cardiovascular system identification method proposed in a companion paper ( 4 ) to quantitatively characterize the dynamic closed-loop transfer relations CO→Pa, PRA→Pa, Pa→TPR, and PRA→TPR from the measured signals. To validate the dynamic properties of the estimated transfer relations, the essential parts of the linear dynamics of the model were independently and comprehensively evaluated via error model cross-validation, and the overall model's steady-state behavior was compared with a separate random effects regression approach. In addition to numerous physiological findings, we found that the cardiovascular system identification results were exceptionally consistent with the analytically derived solutions previously discussed in Ref. 4 . In conclusion, this study presents the first time validation of a cardiovascular system identification method by means of experimentally acquired animal data in the intact and conscious animal and offers a set of powerful quantitative tools essential to advancing our knowledge of cardiovascular regulatory physiology.


2021 ◽  
Author(s):  
Gustavo Sanchez

<div>A method to assess the performance of closed loop control loops, based on closed-loop system identification. This method allows to take into account the trade-off between process variable and manipulated variable energy, thus overcoming one of the most important criticisms to Harris' index. </div>


2021 ◽  
Author(s):  
Gustavo Sanchez

<div>A method to assess the performance of closed loop control loops, based on closed-loop system identification. This method allows to take into account the trade-off between process variable and manipulated variable energy, thus overcoming one of the most important criticisms to Harris' index. </div>


Sign in / Sign up

Export Citation Format

Share Document