control loops
Recently Published Documents


TOTAL DOCUMENTS

898
(FIVE YEARS 230)

H-INDEX

38
(FIVE YEARS 5)

Automatica ◽  
2022 ◽  
Vol 135 ◽  
pp. 109983
Author(s):  
Dimitrios Papageorgiou ◽  
Christopher Edwards

2022 ◽  
Vol 70 (1) ◽  
pp. 53-66
Author(s):  
Julian Grothoff ◽  
Nicolas Camargo Torres ◽  
Tobias Kleinert

Abstract Machine learning and particularly reinforcement learning methods may be applied to control tasks ranging from single control loops to the operation of whole production plants. However, their utilization in industrial contexts lacks understandability and requires suitable levels of operability and maintainability. In order to asses different application scenarios a simple measure for their complexity is proposed and evaluated on four examples in a simulated palette transport system of a cold rolling mill. The measure is based on the size of controller input and output space determined by different granularity levels in a hierarchical process control model. The impact of these decomposition strategies on system characteristics, especially operability and maintainability, are discussed, assuming solvability and a suitable quality of the reinforcement learning solution is provided.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Pierpaolo Dini ◽  
Sergio Saponara

In this paper, a model-based approach for the design of a bidirectional onboard charger (OBC) device for modern hybrid and fully electrified vehicles is proposed. The main objective and contribution of our study is to incorporate in the same simulation environment both modelling of electrical and thermal behaviour of switching devices. This is because most (if not all) of the studies in the literature present analyses of thermal behaviour based on the use of FEM (Finite Element Method) SWs, which in fact require the definition of complicated models based on partial derivative equations. The simulation of such accurate models is computationally expensive and, therefore, cannot be incorporated into the same virtual environment in which the circuit equations are solved. This requires long waiting times and also means that electrical and thermal models do not interact with each other, limiting the completeness of the analysis in the design phase. As a case study, we take as reference the architecture of a modular bidirectional single-phase OBC, consisting of a Totem Pole-type AC/DC converter with Power Factor Correction (PFC) followed by a Dual Active Bridge (DAB) type DC/DC converter. Specifically, we consider a 7 kW OBC, for which its modules consist of switching devices made with modern 900 V GaN (Gallium Nitrade) and 1200 V SiC (Silicon Carbide) technologies, to achieve maximum performance and efficiency. We present a procedure for sizing and selecting electronic devices based on the analysis of behaviour through circuit models of the Totem Pole PFC and DAB converter in order to perform validation by using simulations that are as realistic as possible. The developed models are tested under various operating conditions of practical interest in order to validate the robustness of the implemented control algorithms under varying operating conditions. The validation of the models and control loops is also enhanced by an exhaustive robustness analysis of the parametric variations of the model with respect to the nominal case. All simulations obtained respect the operating limits of the selected devices and components, for which its characteristics are reported in data sheets both in terms of electrical and thermal behaviour.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 129
Author(s):  
Wisam Abed Kattea Al-Maliki ◽  
Auday Shaker Hadi ◽  
Hussein M. H. Al-Khafaji ◽  
Falah Alobaid ◽  
Bernd Epple

A fundamental task in the dynamic simulation of parabolic trough power plants (PTPP) is to understand the behavior of the system physics and control loops in the presence of weather variations. This study provides a detailed description of the advanced controllers used in the power block (PB) of a 50 MWel parabolic trough power plant (PTPP). The PB model is achieved using APROS software based on the actual specifications of the existing power plant. To verify the behaviour of the PB model, a comparison between the simulated results and given real data is documented depending on a previous study, and the results indicate a reasonable degree of correspondence. The purpose of this study is to create reference models for the PB. Thereby, developers and engineers will have a better understanding of the state of the art of advanced control loops in these power plants. Moreover, these types of models can be used to specify the most suitable mode of operation for the power plant. In addition, this study gives an overview of dynamic simulation for the design, optimisation and development of power blocks in parabolic trough power plants.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 7
Author(s):  
Giuseppe Fusco

This paper discusses the application of robust control techniques to a smart grid (SG) in order to find more powerful and suitable control tools to guarantee SG robustness. Two key aspects are in particular discussed. The first one relates to the need of a suitably model for the SG. The second one relates to the selection of an appropriate robust control technique to guarantee rejection of the adverse effects caused by mutual interactions among control loops and model uncertainty. The final purpose is to bridge the gap between the power of robust control theorems and the reality of SG operations.


Author(s):  
Xingyu Zhou ◽  
Zejiang Wang ◽  
Heran Shen ◽  
Junmin Wang

Abstract Concerning automated vehicles, various path-following controllers have been designed by the model reference adaptive control (MRAC) approach. Through appropriate Lyapunov redesigns, asymptotical stability and signal boundedness are ensured for the path-tracking control loops. However, transient behaviors of the closed-loop responses are seldom considered in the context of MRAC synthesis. To bridge the foregoing gap, a closed-loop reference model-based MRAC, which yields an improved transient performance compared with a traditional MRAC, is exploited to synthesize a vehicular path following control law. Besides, an infinitely differentiable projection operator is complemented to the control parameters' adaptation schemes for estimation speed-up and robustness enhancement. Hardware-in-the loop experiments are used to evaluate the proposed method and to demonstrate its improvement over some conventional MRAC designs.


2021 ◽  
Author(s):  
Taoufik QORIA ◽  
Xavier Guillaud

The inner cascaded structure-based grid-forming control is a typical solution used to impose an AC voltage magnitude across the output filters of the power inverters. Yet, because of the limited inverter’s bandwidth resulting from the low-switching frequencies in transmission systems, the interaction (i.e., coupling) between control loops is highly likely making the understanding of the system behavior complex and its simplification unaffordable and may also lead to instabilities. The novelty of this paper consists in proposing a simple open-loop direct voltage control to reduce the number of the inner control regulators, and thereby guaranteeing a decoupling between the inner and outer control layers as well as increasing the system stability margin. This statement is well supported with a small-signal analysis and progressive order model reduction of the system. The overall concept is validated in a 10-bus grid case while comparing the EMT and Phasor-based simulations. The practical feasibility of the control itself is experimentally proved with different test cases.


2021 ◽  
Author(s):  
Taoufik QORIA ◽  
Xavier Guillaud

The inner cascaded structure-based grid-forming control is a typical solution used to impose an AC voltage magnitude across the output filters of the power inverters. Yet, because of the limited inverter’s bandwidth resulting from the low-switching frequencies in transmission systems, the interaction (i.e., coupling) between control loops is highly likely making the understanding of the system behavior complex and its simplification unaffordable and may also lead to instabilities. The novelty of this paper consists in proposing a simple open-loop direct voltage control to reduce the number of the inner control regulators, and thereby guaranteeing a decoupling between the inner and outer control layers as well as increasing the system stability margin. This statement is well supported with a small-signal analysis and progressive order model reduction of the system. The overall concept is validated in a 10-bus grid case while comparing the EMT and Phasor-based simulations. The practical feasibility of the control itself is experimentally proved with different test cases.


Author(s):  
V. V. Sleptsov ◽  
V. L. Afonin ◽  
A. E. Ablaeva ◽  
Ba Phuong Dinh

The article deals with the issues of synthesis and analysis of information-measuring and control systems of quadrocopters. The main sensors and modules used to determine the parameters of the coordinates of quadrocopters are given. The speed-controlled electric drives used for control and the features of their choice are considered. The coordinate systems (fixed and mobile) and the kinematic scheme are given, according to which a system of differential equations is presented. The system describes the dynamics of the quadrocopter movement and takes into account the expected smooth movement of the quadrocopter with small roll and pitch angles. A functional scheme and a mathematical model of the information-measuring and control system of the quadrocopter in the form of a block diagram are developed taking into account the influence of delays in the receipt of information from the sensors of the quadrocopter parameters. A special feature of this work is to take into account the specific characteristics of the elements: adjustable electric drives (both direct and alternating current), parameter sensors (barometers, accelerometers, rangefinders, etc.). The paper studies an illustrative algorithm for the operation of the informationmeasuring and control system of the quadcopter. The type and parameters of the controllers of the quadrocopter control systems are determined. Special attention is paid to the settings for the control contours at the corresponding coordinates. The influence of the controllers of the coordinate control systems of the information-measuring and control systems of the quadrocopter on the effects of the interaction of coordinates is considered. The simulation results are presented. The optimal number of control loops for the coordinates of the information-measuring and control systems of the quadrocopter and the optimal type of settings for obtaining smooth transients (without overshoot) and for excluding the interaction of coordinates on quality indicators are determined.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 320
Author(s):  
Robert R. Gomes ◽  
Luiz F. Pugliese ◽  
Waner W. A. G. Silva ◽  
Clodualdo V. Sousa ◽  
Guilherme M. Rezende ◽  
...  

Induction machines are widely used in the industry due to their many advantages compared to other industrial machines. This article presents the study and implementation of speed control applied to a Three-phase Induction Machine (MIT) of the squirrel cage type. The induction motor was modeled using the rotor flux in the synchronous reference to design Proportional-Integral (PI) type controllers for the current and velocity control loops. It is the objective of the article also to present in detail the development of converter hardware that comprises the stages of power, acquisition, and conditioning of engine signals. The system was simulated using computational tools and validated using a prototype designed, constructed, and commissioned.


Sign in / Sign up

Export Citation Format

Share Document