The effect of temperature-dependent viscosity on heat transfer over a continuous moving surface with variable internal heat generation

2004 ◽  
Vol 153 (3) ◽  
pp. 721-731 ◽  
Author(s):  
E.M.A. Elbashbeshy ◽  
M.A.A. Bazid
2018 ◽  
Vol 7 (2.15) ◽  
pp. 86
Author(s):  
Nurul Hafizah Zainal Abidin ◽  
Nor Fadzillah Mohd Mokhtar ◽  
Nur Zarifah Abdul Hamid ◽  
Zanariah Abdul Majid

The effects of temperature dependent viscosity and internal heat generation on the onset of steady Bénard-Marangoni convection in a horizontal binary fluid layer heated from below is investigated theoretically. The upper free surface is assumed to be deformable and the lower boundary is considered to be rigid and perfectly insulated to temperature perturbations. The asymptotic solution of the long wavelength is obtained using regular perturbation method with wave number as a perturbation parameter. It is found that the surface deformation of a binary fluid layer enhances the onset of thermocapillary convection while increasing the value of internal heat generation and temperature dependent viscosity will destabilize the binary fluid layer system. 


2017 ◽  
Vol 377 ◽  
pp. 1-16
Author(s):  
Raseelo Joel Moitsheki ◽  
Oluwole Daniel Makinde

In this paper we consider heat transfer in a hot body with different geometries. Here, the thermal conductivity and internal heat generation are both temperature-dependent. This assumption rendered the model considered to be nonlinear. We assume that thermal conductivity is given by a power law function. We employ the preliminary group classification to determine the cases of internal heat generation for which the principal Lie algebra extends by one. Exact solutions are constructed for the case when thermal conductivity is a differential consequence of internal heat generation term. We derive the approximate numerical solutions for the cases where exact solutions are difficult to construct or are nonexistent. The effects of parameters appearing in the model on temperature profile are studied.


1967 ◽  
Vol 89 (2) ◽  
pp. 155-162 ◽  
Author(s):  
H. M. Hung ◽  
F. C. Appl

An analytical study of the temperature distribution along thin fins with temperature-dependent thermal properties and internal heat generation is presented. The analysis utilizes a recently published bounding procedure which yields analytical and continuous bounding functions for the temperature distribution. Several numerical examples are considered. Tabular and graphical results are given. The effects of variable thermal properties and internal heat generation are also shown.


2017 ◽  
Vol 374 ◽  
pp. 106-120 ◽  
Author(s):  
Gbeminiyi M. Sobamowo ◽  
Bayo Y. Ogunmola ◽  
Gaius Nzebuka

In this study, heat transfer in a longitudinal rectangular fin with temperature-dependent thermal properties and internal heat generation has been analyzed using finite volume method. The numerical solution was validated with the exact solution for the linear problem. The developed heat transfer models were used to investigate the effects of thermo-geometric parameters, coefficient of heat transfer and thermal conductivity (non-linear) parameters on the temperature distribution, heat transfer and thermal performance of the longitudinal rectangular fin. From the results, it shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric of the fin. Therefore, the results obtained in this analysis serve as basis for comparison of any other method of analysis of the problem and they also provide platform for improvement in the design of fin in heat transfer equipment.


Sign in / Sign up

Export Citation Format

Share Document