00/01371 Direct torque control of induction motors for electric propulsion systems

2000 ◽  
Vol 41 (3) ◽  
pp. 154
1999 ◽  
Vol 51 (2) ◽  
pp. 95-101 ◽  
Author(s):  
J. Faiz ◽  
S.H. Hossieni ◽  
M. Ghaneei ◽  
A. Keyhani ◽  
A. Proca

2011 ◽  
Vol 354-355 ◽  
pp. 1252-1256
Author(s):  
You Tao Zhao ◽  
Yan Cheng Liu ◽  
Jun Jie Ren

With the development of AC (alternating current )technique, larger power PMSM ( permanent m- agnet synchronous motor ) has been applied in the marine electric propulsion systems. In this paper the imple- mentation of the DTC (direct torque control) systems for a variable-speed 4088kW PMSM in ship electric propulsion systems has been studied. A novel control method using SVPWM (space vector pulse width mo- dulation) was proposed and a SVPWM module was designed. Then a DTC – SVPWM simulation model of PMSM with the load of propeller was found. The simulation results shows that the variable frequency speed regulation system have good response performance in the process of the motor start or speedup and through comparing the simulation results with the experiment data of the PMSM, the validity of the model is verified.


In these days, developments in the area of Induction Motor control is increasing significantly. Considerable advancements have been taken place in the area of Direct Torque Control (DTC), which is capable of providing quick dynamic response with respect to torque and flux. This paper presents a detailed survey on various latest techniques of DTC control of Induction Motor such as DTC-SVM with hysteresis band, DTCSVM with Model Predictive Control, DTC with sliding mode control, DTC with Model reference adaptive system (MRAS) et cetera. The simulation results are discussed for DTC-SVPWM topology and results obtained proves that this method has reduced torque ripple


2014 ◽  
Vol 672-674 ◽  
pp. 1214-1218
Author(s):  
Hai Fang Yu ◽  
Peng Gao ◽  
Shun Jie Han

An efficiency optimization model for induction motors with speed-sensorless control is presented in this paper. An mathematical loss model with stator iron loss in DTC(Direct Torque Control) system is used to calculate the motors loss, the loss efficiency and the optimal flux. Additionally, the efficiency optimization control strategy combined with the speed-sensorless model is used to rebuild the simulation modeling. The simulation results with the proposed control strategy show superior effects compared to the traditional control methods. The optimal control strategy can be achieved to improve the motor efficiency.


Sign in / Sign up

Export Citation Format

Share Document