Controls on turbidite sand deposition during gravity-driven extension of a passive margin: examples from Miocene sediments in block 4, Angola

2002 ◽  
Vol 43 (2) ◽  
pp. 97-98
2021 ◽  
Author(s):  
Francyne B. Amarante ◽  
Christopher A-L. Jackson ◽  
Leonardo M. Pichel ◽  
Claiton M. S. Scherer ◽  
Juliano Kuchle

<p>Salt-bearing passive margin basins offshore SE Brazil have been and remain attractive for hydrocarbon exploration and production. In the Campos Basin, major reservoir types include post-salt turbidites, which are located in structural traps related to thin-skinned faulting above salt anticlines and rollers. Classic models of gravity-driven salt tectonics commonly depict kinematically linked zones of deformation, characterised by updip extension and downdip contraction, separated by a weakly deformed zone associated with downdip translation above a relatively smooth base-salt surface. We use 2D and 3D seismic reflection and borehole data from the south-central Campos Basin to show that this does not adequately capture the styles of salt-detached gravity-driven deformation above relict, rift-related relief. The base-salt surface is composed of elongated, broadly seaward-dipping ramps with structural relief reaching c. 2 km. These ramps define the boundary between the External High and the External Low, basement structures related to the rift tectonics. Local deformation associated with the base-salt ramps can overprint and/or influence regional, margin-scale patterns of deformation producing kinematically-variable and multiphase salt deformation. We define three domains of thin-skinned deformation: an updip extensional domain, subdivided into subdomains E1 and E2, an intermediate multiphase domain and a downdip contractional domain. The multiphase domain is composed of three types of salt structures with a hybrid extensional-contractional origin and evolution. These are: (i) contractional anticlines that were subjected to later extension and normal faulting; (ii) diapirs with passive and active growth later subjected to regional extension, developing landward-dipping normal faults on the landward flank; and, lastly, (iii) an extensional diapir that was subsequently squeezed. We argue that this multiphase style of deformation occurs as a consequence of base-salt geometry and relief creating local variations of salt flow that localize extension at the top and along the ramps, and contraction at the base. Translation and extension of salt and its overburden across major base-salt ramps resulted in three ramp syncline basins northeast of the study area, partially bounded by salt-detached listric faults. The temporal and spatial distribution and evolution of these and other key salt and overburden structures, and their relationship to base-salt relief, suggest 30 to 60 km of horizontal gravity-driven translation of salt and overburden.</p>


2019 ◽  
Vol 132 (5-6) ◽  
pp. 997-1012 ◽  
Author(s):  
Michael R. Hudec ◽  
Tim P. Dooley ◽  
Frank J. Peel ◽  
Juan I. Soto

Abstract Passive-margin salt basins tend to be much more deformed than their nonsalt equivalents, but they are by no means all the same. We used seismic data to study the Salina del Bravo region, northeast Mexico, to investigate the ways in which margin configuration and postsalt uplift history can influence passive-margin salt tectonics. The Salina del Bravo area contains four main structural systems, all of which trend NNE across the entire region. These structures are the Bravo trough, Sigsbee salt canopy, Perdido fold-and-thrust belt, and BAHA high. Gravity-driven deformation did not begin until more than 130 m.y. after salt deposition, because of buttressing against the BAHA high. We suggest that deformation was ultimately triggered in the Cenozoic by Cordilleran uplift that tilted the margin seaward and created a major sediment source terrane. Sediments shed from the uplift expelled salt seaward to form the Sigsbee canopy. At the same time, tilted and loaded sediments were translated seaward on the Louann salt until they were buttressed against the BAHA high, forming the Perdido fold-and-thrust belt. A physical model was built to test this hypothesis. The model was able to reproduce most of the major structures in the region, suggesting that the hypothesis is reasonable. The Salina del Bravo region shows how a downdip buttress can inhibit gravity-driven salt deformation in passive-margin salt basins. Furthermore, the area also shows the importance of postsalt uplift, which can destabilize a margin through a combination of tilting and sedimentation.


2016 ◽  
Vol 155 (1) ◽  
pp. 85-97 ◽  
Author(s):  
GUSTAVO G. VOLDMAN ◽  
JUAN L. ALONSO ◽  
LUIS P. FERNÁNDEZ ◽  
ALDO L. BANCHIG ◽  
GUILLERMO L. ALBANESI ◽  
...  

AbstractThe Los Sombreros Formation represents the western continental margin slope deposits of the Argentine Precordillera, a sub-terrane accreted to Gondwana as part of the Cuyania Terrane in early Palaeozoic times. The age of these gravity-driven deposits is controversial and, therefore, a precise biostratigraphic scheme is essential to reveal the evolution of the continental margin. New conodont samplings along with sedimentological and structural analysis carried out in the Los Sombreros Formation in the La Invernada Range provide clues to its depositional framework. The sedimentary succession is made up of dominantly calciturbidites, carbonate breccias and conglomerates, along with mudstones that represent the pelagic/hemipelagic background sedimentation. It displays hectometric to outcrop-scale slump folds with variable hinge-line orientations and pinch-and-swell structures, evidencing soft-sediment deformation, consistent with a slope to base-of-slope setting. Three limestone samples from this succession include conodonts referable to the pandemicHirsutodontus simplexSubzone of theCordylodus intermediusZone (upper Furongian, Cambrian) and from theMacerodus dianaeZone (upper Tremadocian, Ordovician), implying that a slope connected the shallow-water shelf with a deep-water (oceanic) basin at least since late Cambrian times. The conodont faunas show affinities to coeval assemblages from outer shelf and slope environments around Laurentia yet they are not conclusive to postulate a geographic origin for the Precordillera. The thermal alteration of the conodonts is consistent with sedimentary burial and nappe stacking in this sector of the Precordillera.


2021 ◽  
Vol 61 (2) ◽  
pp. 632
Author(s):  
Monica Jimenez ◽  
Simon P. Holford ◽  
Rosalind C. King ◽  
Mark A. Bunch

Kinematics of gravity-driven normal faults exerts a critical control on petroleum systems in deltaic settings but to date has not been extensively examined. The Ceduna Sub-basin (CSB) is a passive margin basin containing the White Pointer (Albian-Cenomanian) and Hammerhead (Campanian-Maastrichtian) delta systems that detach on shale layers of Albian-Cenomanian and Turonian-Coniacian ages, respectively. Here we present evidence for spatially variable fault growth styles based on interpretation of the Ceduna 3D seismic survey and fault kinematic analyses using displacement–distance, displacement–depth and expansion index methods. We identified faults that continuously grew either between the Cenomanian–Santonian or Santonian and the Maastrichtian located throughout the study area and faults that exhibit growth between the Cenomanian–Maastrichtian that are geographically separated into three areas according to their evolution histories: (i) Northern CSB faults exhibit constant growth between the Cenomanian and Maastrichtian. (ii) Central CSB faults show two dip-linkage intervals between (a) Cenomanian and Coniacian–Late Santonian, (b) Coniacian–Late Santonian and Late Santonian–Maastrichtian segments, respectively. (iii) Central and southern CSB faults exhibit dip-linkage intervals between Cenomanian–early Santonian and Late Santonian–Maastrichtian segments. Our study demonstrates a relationship between the location of the Cenomanian–Maastrichtian faults and their evolution history suggesting constant growth evolution at north and dip linkage at the central and south areas.


Sign in / Sign up

Export Citation Format

Share Document