fold and thrust belt
Recently Published Documents


TOTAL DOCUMENTS

893
(FIVE YEARS 259)

H-INDEX

54
(FIVE YEARS 6)

Author(s):  
Guihua Chen ◽  
Xun Zeng ◽  
Zhongwu Li ◽  
Xiwei Xu

Abstract The fold-and-thrust belt along the northern margin of the Qaidam basin is a typical active tectonic belt located in the northeast Tibetan Plateau. This belt is at a high risk of strong earthquakes with magnitudes larger than 6, as shown by multiple recorded events during 1962–2009. The lack of detailed late Quaternary surficial faulting data and systematic seismotectonic studies has posed difficulties in properly assessing the seismic risks and understanding the ongoing geodynamics in this region. In this study, we mapped the geomorphic features and fault traces from high-resolution satellite images and field investigations of the Tuosuhu-Maoniushan fault (TMF). Field photogrammetry was conducted to obtain deformation measurements using a DJI M300 real-time kinematic (RTK) drone. The TMF displaces the Holocene and late Pleistocene alluvial terraces in the eastern Qaidam basin. This fault dips to the south in the west and central segments (as a boundary of the Denan depression) and to the north in the eastern segment along the piedmont of the Maoniushan Mountains. The vertical slip rate is estimated to be 0.37 ± 0.08 mm/yr, which is similar to that of the active southern Zongwulongshan fault. By integrating our investigations with the previously published studies on deep structures and Cenozoic geology of the region, we propose a deep-seated thrust model for the seismotectonics of the northern margin of the Qaidam basin. The Aimunike, Tuosuhu-Maoniushan, southern Zongwulongshan, and Zongwulong faults, along with many folds, form an active compressional zone. The complex across-strike structures and along-strike segmentation could facilitate the release of strain through earthquakes of magnitude 6–7 in this broad seismotectonics belt, rather than through strong surface-rupturing events resulting from a single mature large fault.


2022 ◽  
Vol 115 (1) ◽  
Author(s):  
Federica Lanza ◽  
Tobias Diehl ◽  
Nicholas Deichmann ◽  
Toni Kraft ◽  
Christophe Nussbaum ◽  
...  

AbstractThe interpretation of seismotectonic processes within the uppermost few kilometers of the Earth’s crust has proven challenging due to the often significant uncertainties in hypocenter locations and focal mechanisms of shallow seismicity. Here, we revisit the shallow seismic sequence of Saint-Ursanne of March and April 2000 and apply advanced seismological analyses to reduce these uncertainties. The sequence, consisting of five earthquakes of which the largest one reached a local magnitude (ML) of 3.2, occurred in the vicinity of two critical sites, the Mont Terri rock laboratory and Haute-Sorne, which is currently evaluated as a possible site for the development of a deep geothermal project. Template matching analysis for the period 2000–2021, including data from mini arrays installed in the region since 2014, suggests that the source of the 2000 sequence has not been persistently active ever since. Forward modelling of synthetic waveforms points to a very shallow source, between 0 and 1 km depth, and the focal mechanism analysis indicates a low-angle, NNW-dipping, thrust mechanism. These results combined with geological data suggest that the sequence is likely related to a backthrust fault located within the sedimentary cover and shed new light on the hosting lithology and source kinematics of the Saint-Ursanne sequence. Together with two other more recent shallow thrust faulting earthquakes near Grenchen and Neuchâtel in the north-central portion of the Jura fold-and-thrust belt (FTB), these new findings provide new insights into the present-day seismotectonic processes of the Jura FTB of northern Switzerland and suggest that the Jura FTB is still undergoing seismically active contraction at rates likely < 0.5 mm/yr. The shallow focal depths provide indications that this low-rate contraction in the NE portion of the Jura FTB is at least partly accommodated within the sedimentary cover and possibly decoupled from the basement.


2022 ◽  
Author(s):  
Samuele Papeschi ◽  
Alessio Pontesilli ◽  
Claudia Romano ◽  
Federico Rossetti ◽  
Thomas Theye

The hinterland of the Cenozoic Northern Apennines fold-and-thrust belt exposes the metamorphic roots of the chain, vestiges of the subduction-related tectono-metamorphic evolution that led to the buildup of the Alpine orogeny in the Mediterranean region. Like in other peri-Mediterranean belts, the tectono-metamorphic evolution of the Paleozoic continental basement in the Apennines is still poorly constrained, hampering the full understanding of their Alpine orogenic evolution. We report the first comprehensive tectono-metamorphic study of the low-grade metasedimentary (metapsammite/metapelite) succession of the Monti Romani Complex (MRC) that formed after Paleozoic protoliths and constitutes the southernmost exposure of the metamorphic domain of the Northern Apennines. By integrating fieldwork with microstructural studies, Raman spectroscopy on carbonaceous material and thermodynamic modelling, we show that the MRC preserves a D1/M1 Alpine tectono-metamorphic evolution developed under HP-LT conditions (~ 1.0-1.1 GPa at T ~400 °C) during a non-coaxial, top-to-the-NE, crustal shortening regime. Evidence for HP-LT metamorphism is generally cryptic within the MRC, dominated by graphite-bearing assemblages with the infrequent blastesis of muscovite ± chlorite ± chloritoid ± paragonite parageneses, equilibrated under cold paleo-geothermal conditions (~ 10 °C/km). Results of this study allow extending to the MRC the signature of subduction zone metamorphism already documented in the hinterland of the Apennine orogen, providing further evidence of the syn-orogenic ductile exhumation of the HP units in the Apennine belt. Finally, we discuss the possible role of fluid-mediated changes in the reactive bulk rock composition on mineral blastesis during progress of regional deformation and metamorphism at low-grade conditions.


Author(s):  
Yuqing He ◽  
Teng Wang ◽  
Lihua Fang ◽  
Li Zhao

Abstract The Keping-tage fold-and-thrust belt in southwest Tian Shan is seismically active, yet the most well-recorded earthquakes occurred south of the mountain front. The lack of large earthquakes beneath the fold-and-thrust belt thus hinders our understanding of the orogenic process to the north. The 2020 Mw 6.0 Jiashi earthquake is an important event with surface deformation in the fold-and-thrust belt well illuminated by Interferometric Synthetic Aperture Radar, providing an opportunity to study the present-day kinematics of the thrust front through the analysis of satellite measurements of surface deformations. Here, we employ the surface deformation and relocated aftershocks to investigate the fault-slip distribution associated to this event. Further added by an analysis of Coulomb stress changes, we derive a fault model involving slips on a shallow, low-angle (∼10°) north-dipping thrust fault as well as on a left-lateral tear fault and a high-angle south-dipping reverse fault in mid-crust. Aftershocks at depth reflect the basement-involved shortening activated by a thin-skinned thrust faulting event. In addition, this earthquake uplifted the southernmost mountain front with relatively low topography, indicating the basin-ward propagation of the southwest Tian Shan.


2021 ◽  
Author(s):  
Muhammad Tahir Javed ◽  
Sylvain Barbot ◽  
Carla Braitenberg ◽  
Farhan Javed ◽  
Aamir Ali

Sign in / Sign up

Export Citation Format

Share Document