Salt Tectonics and Gravity Driven Deformation: Structural Guidelines for Exploration in Passive Margin: ABSTRACT

AAPG Bulletin ◽  
1995 ◽  
Vol 79 ◽  
Author(s):  
Thomas Mauduit, Gwenael Guerin, Jea
2021 ◽  
Author(s):  
Francyne B. Amarante ◽  
Christopher A-L. Jackson ◽  
Leonardo M. Pichel ◽  
Claiton M. S. Scherer ◽  
Juliano Kuchle

<p>Salt-bearing passive margin basins offshore SE Brazil have been and remain attractive for hydrocarbon exploration and production. In the Campos Basin, major reservoir types include post-salt turbidites, which are located in structural traps related to thin-skinned faulting above salt anticlines and rollers. Classic models of gravity-driven salt tectonics commonly depict kinematically linked zones of deformation, characterised by updip extension and downdip contraction, separated by a weakly deformed zone associated with downdip translation above a relatively smooth base-salt surface. We use 2D and 3D seismic reflection and borehole data from the south-central Campos Basin to show that this does not adequately capture the styles of salt-detached gravity-driven deformation above relict, rift-related relief. The base-salt surface is composed of elongated, broadly seaward-dipping ramps with structural relief reaching c. 2 km. These ramps define the boundary between the External High and the External Low, basement structures related to the rift tectonics. Local deformation associated with the base-salt ramps can overprint and/or influence regional, margin-scale patterns of deformation producing kinematically-variable and multiphase salt deformation. We define three domains of thin-skinned deformation: an updip extensional domain, subdivided into subdomains E1 and E2, an intermediate multiphase domain and a downdip contractional domain. The multiphase domain is composed of three types of salt structures with a hybrid extensional-contractional origin and evolution. These are: (i) contractional anticlines that were subjected to later extension and normal faulting; (ii) diapirs with passive and active growth later subjected to regional extension, developing landward-dipping normal faults on the landward flank; and, lastly, (iii) an extensional diapir that was subsequently squeezed. We argue that this multiphase style of deformation occurs as a consequence of base-salt geometry and relief creating local variations of salt flow that localize extension at the top and along the ramps, and contraction at the base. Translation and extension of salt and its overburden across major base-salt ramps resulted in three ramp syncline basins northeast of the study area, partially bounded by salt-detached listric faults. The temporal and spatial distribution and evolution of these and other key salt and overburden structures, and their relationship to base-salt relief, suggest 30 to 60 km of horizontal gravity-driven translation of salt and overburden.</p>


2019 ◽  
Vol 132 (5-6) ◽  
pp. 997-1012 ◽  
Author(s):  
Michael R. Hudec ◽  
Tim P. Dooley ◽  
Frank J. Peel ◽  
Juan I. Soto

Abstract Passive-margin salt basins tend to be much more deformed than their nonsalt equivalents, but they are by no means all the same. We used seismic data to study the Salina del Bravo region, northeast Mexico, to investigate the ways in which margin configuration and postsalt uplift history can influence passive-margin salt tectonics. The Salina del Bravo area contains four main structural systems, all of which trend NNE across the entire region. These structures are the Bravo trough, Sigsbee salt canopy, Perdido fold-and-thrust belt, and BAHA high. Gravity-driven deformation did not begin until more than 130 m.y. after salt deposition, because of buttressing against the BAHA high. We suggest that deformation was ultimately triggered in the Cenozoic by Cordilleran uplift that tilted the margin seaward and created a major sediment source terrane. Sediments shed from the uplift expelled salt seaward to form the Sigsbee canopy. At the same time, tilted and loaded sediments were translated seaward on the Louann salt until they were buttressed against the BAHA high, forming the Perdido fold-and-thrust belt. A physical model was built to test this hypothesis. The model was able to reproduce most of the major structures in the region, suggesting that the hypothesis is reasonable. The Salina del Bravo region shows how a downdip buttress can inhibit gravity-driven salt deformation in passive-margin salt basins. Furthermore, the area also shows the importance of postsalt uplift, which can destabilize a margin through a combination of tilting and sedimentation.


2021 ◽  
Author(s):  
Leonardo Pichel ◽  
Oriol Ferrer ◽  
Christopher Jackson ◽  
Eduard Roca

The Santos Basin presents a complex and controversial evolution and distribution of salt tectonics domains. The controversies revolve mainly around the kinematically- linked Albian Gap and São Paulo Plateau. The Albian Gap is a ~450 km long and 60 km wide feature characterized by a post-Albian counter-regional rollover overlying depleted Aptian salt and in which the Albian is absent. The São Paulo Plateau is defined by a pre-salt structural high with significant base-salt topography and overlain by ~2.5 km thick salt. Another prominent feature is the Merluza Graben, a rift depocentre that underlies the southern portion of the Albian Gap and displays significant (3-4 km) of base-salt relief. Two competing hypotheses have been proposed to explain the origin and kinematics of these provinces. One invokes post- Albian extension within the Albian Gap and contraction in the Sao Paulo Plateau. The other invokes post-Albian salt expulsion in the Albian Gap and salt inflation in the São Paulo Plateau without significant lateral deformation. A recent study shows these processes contribute equally to the evolution of these domains, also demonstrating the importance of the previously neglected base-salt relief. We apply 3D physical modelling to test these new concepts and understand the interplay between laterally- variable base-salt relief, gliding and spreading on salt tectonics. Our results show a remarkably-similar salt and post-salt evolution and architecture to the Santos Basin as proposed in recent studies. They improve the understanding on the distribution and interaction of salt-related structural styles and gravity-driven processes, being also applicable to other salt-bearing margins.


Sign in / Sign up

Export Citation Format

Share Document