Effect of leaching on the ash behavior of wheat straw and olive residue during fluidized bed combustion

2002 ◽  
Vol 43 (3) ◽  
pp. 206
2001 ◽  
Vol 20 (6) ◽  
pp. 459-470 ◽  
Author(s):  
S. Arvelakis ◽  
P. Vourliotis ◽  
E. Kakaras ◽  
E.G. Koukios

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2162
Author(s):  
Joseba Moreno ◽  
Matthias Hornberger ◽  
Max Schmid ◽  
Günter Scheffknecht

The fluidized bed combustion (FBC) of biomass and solid recovered fuel (SRF) is globally emerging as a viable solution to achieve net-negative carbon emissions in the heat and power sector. Contrary to conventional fossil fuels, alternative fuels are highly heterogeneous, and usually contain increased amounts of alkaline metals and chlorine. Hence, experimental studies are mandatory in order to thoroughly characterize the combustion behavior and pollutant formation of non-conventional fuels in novel applications. This work gives an overview of experimental investigations on the oxy-fuel combustion of hard coal, wheat straw, and SRF with a limestone bed in a semi-industrial circulating fluidized bed (CFB) pilot plant. The CFB combustor was able to be operated under different fuel blending ratios and inlet O2 concentrations, showing a stable hydrodynamic behavior over many hours of continuous operation. The boundary conditions introduced in this study are expected to prevail in carbon capture and storage (CCS) processes, such as the oxy-fuel combustion in the CFB calciner of a Calcium Looping (CaL) cycle for post-combustion CO2 capture.


Author(s):  
Tânia Ferreira ◽  
Carlos Alberto Catorze Pereira ◽  
Carlos Pinho ◽  
JOÃO LUÍS MONNEY DE SÁ PAIVA ◽  
Edmundo Manuel Tavares Marques

Oil Shale ◽  
2020 ◽  
Vol 37 (2) ◽  
pp. 89 ◽  
Author(s):  
H Liu ◽  
S Feng ◽  
S Zhang ◽  
C Jia ◽  
H Xuan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3106
Author(s):  
Tomasz Kalak ◽  
Kinga Marciszewicz ◽  
Joanna Piepiórka-Stepuk

Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.


2005 ◽  
Vol 128 (2) ◽  
pp. 99-103 ◽  
Author(s):  
Alberto Bahillo ◽  
Lourdes Armesto ◽  
Andrés Cabanillas ◽  
Juan Otero

Transformation of hide (animal skins) into leather is a complicated process during which significant amounts of wastes are generated. Fluidized bed combustion has been extended to burn different wastes that have problems with their disposal showing its technical feasibility. Considering the characteristics of the leather waste, especially the heating value (12.5-21MJ∕kg), it is a fairly good fuel. Moreover, leather waste has a high volatile matter, 65%, similar to other biomasses and unusual high nitrogen content, 14%. The aim of this work was to study leather wastes combustion in fluidized bed presenting experimental results regarding NOx and N2O emissions. A series of experiments were carried out in a fluidized bed pilot plant to understand the importance of operating parameters such as furnace temperature, oxygen content in gases, staged combustion and residence time on the NOx and N2O emission level. Despite having high nitrogen content, low conversion of N-fuel to NOx and N2O was measured during the combustion of leather waste in BFB. Bed temperature and oxygen content were found as the most important single parameters on N2O emission and only oxygen content has a significant influence on NOx emission. Leather waste exhibits a great NOx∕O2 trend; NOx emission decreases as the oxygen concentration decreases while the effect of combustion temperature on NOx is insignificant. Staged combustion does not give a reduction in NOx.


Sign in / Sign up

Export Citation Format

Share Document