Fluidized bed combustion of char pellets made from blends of shrubs and cork residues

Author(s):  
Tânia Ferreira ◽  
Carlos Alberto Catorze Pereira ◽  
Carlos Pinho ◽  
JOÃO LUÍS MONNEY DE SÁ PAIVA ◽  
Edmundo Manuel Tavares Marques
Oil Shale ◽  
2020 ◽  
Vol 37 (2) ◽  
pp. 89 ◽  
Author(s):  
H Liu ◽  
S Feng ◽  
S Zhang ◽  
C Jia ◽  
H Xuan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3106
Author(s):  
Tomasz Kalak ◽  
Kinga Marciszewicz ◽  
Joanna Piepiórka-Stepuk

Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.


2005 ◽  
Vol 128 (2) ◽  
pp. 99-103 ◽  
Author(s):  
Alberto Bahillo ◽  
Lourdes Armesto ◽  
Andrés Cabanillas ◽  
Juan Otero

Transformation of hide (animal skins) into leather is a complicated process during which significant amounts of wastes are generated. Fluidized bed combustion has been extended to burn different wastes that have problems with their disposal showing its technical feasibility. Considering the characteristics of the leather waste, especially the heating value (12.5-21MJ∕kg), it is a fairly good fuel. Moreover, leather waste has a high volatile matter, 65%, similar to other biomasses and unusual high nitrogen content, 14%. The aim of this work was to study leather wastes combustion in fluidized bed presenting experimental results regarding NOx and N2O emissions. A series of experiments were carried out in a fluidized bed pilot plant to understand the importance of operating parameters such as furnace temperature, oxygen content in gases, staged combustion and residence time on the NOx and N2O emission level. Despite having high nitrogen content, low conversion of N-fuel to NOx and N2O was measured during the combustion of leather waste in BFB. Bed temperature and oxygen content were found as the most important single parameters on N2O emission and only oxygen content has a significant influence on NOx emission. Leather waste exhibits a great NOx∕O2 trend; NOx emission decreases as the oxygen concentration decreases while the effect of combustion temperature on NOx is insignificant. Staged combustion does not give a reduction in NOx.


1988 ◽  
Vol 136 ◽  
Author(s):  
A. E. Bland ◽  
C. E. Jones ◽  
J. G. Rose ◽  
J. L. Harness

ABSTRACTOver the last five years, the Kentucky Energy Cabinet (KEC) and the Tennessee Valley Authority (TVA) have developed and demonstrated the production of concrete from atmospheric fluidized bed combustion (AFBC) spent bed (SB) ash, and pulverized fuel ash (PFA). This AFBC concrete contains no cement and relies on the reaction of residual lime in the SB ash to react with the pozzolan PFA to form cementitious products. The SB ash is prehydrated in order to reduce exothermic lime hydration reactions and minimize molar volume expansion. Laboratory tests were conducted to establish the performance characteristics of AFBC concretes relative to conventional concrete. AFBC concretes exhibit slower strength gain characteristics, but long term (60 day), unconfined compressive strengths of 5,000 psi have been documented. This slow strength development is typical of pozzolanic concretes. AFBC concrete is more flexible and less brittle than conventional Portland cement concrete, as evidenced by its much lower modulus of elasticity. Setting times for AFBC concretes are extended, requiring the use of accelerators under certain applications. Field demonstrations of the AFBC concretes in ready mix concrete, masonry units, and road base applications have indicated excellent workability and finishing characteristics and confirm the laboratory performance characteristics.The paper describes the results of the testing program with emphasis on the ash chemistry/conditioning, the performance characteristics and field demonstrations.


Sign in / Sign up

Export Citation Format

Share Document