Life cycle assessment of energy and environmental implications of the implementation of conservation technologies in school buildings in Mendoza-Argentina

2003 ◽  
Vol 44 (4) ◽  
pp. 262
2019 ◽  
Vol 11 (9) ◽  
pp. 2539 ◽  
Author(s):  
Maria Milousi ◽  
Manolis Souliotis ◽  
George Arampatzis ◽  
Spiros Papaefthimiou

The paper presents a holistic evaluation of the energy and environmental profile of two renewable energy technologies: Photovoltaics (thin-film and crystalline) and solar thermal collectors (flat plate and vacuum tube). The selected renewable systems exhibit size scalability (i.e., photovoltaics can vary from small to large scale applications) and can easily fit to residential applications (i.e., solar thermal systems). Various technical variations were considered for each of the studied technologies. The environmental implications were assessed through detailed life cycle assessment (LCA), implemented from raw material extraction through manufacture, use, and end of life of the selected energy systems. The methodological order followed comprises two steps: i. LCA and uncertainty analysis (conducted via SimaPro), and ii. techno-economic assessment (conducted via RETScreen). All studied technologies exhibit environmental impacts during their production phase and through their operation they manage to mitigate significant amounts of emitted greenhouse gases due to the avoided use of fossil fuels. The life cycle carbon footprint was calculated for the studied solar systems and was compared to other energy production technologies (either renewables or fossil-fuel based) and the results fall within the range defined by the global literature. The study showed that the implementation of photovoltaics and solar thermal projects in areas with high average insolation (i.e., Crete, Southern Greece) can be financially viable even in the case of low feed-in-tariffs. The results of the combined evaluation provide insight on choosing the most appropriate technologies from multiple perspectives, including financial and environmental.


2019 ◽  
Vol 11 (20) ◽  
pp. 5679 ◽  
Author(s):  
Zackrisson ◽  
Jönsson ◽  
Johannisson ◽  
Fransson ◽  
Posner ◽  
...  

With increasing interest in reducing fossil fuel emissions, more and more development is focused on electric mobility. For electric vehicles, the main challenge is the mass of the batteries, which significantly increase the mass of the vehicles and limits their range. One possible concept to solve this is incorporating structural batteries; a structural material that both stores electrical energy and carries mechanical load. The concept envisions constructing the body of an electric vehicle with this material and thus reducing the need for further energy storage. This research is investigating a future structural battery that is incorporated in the roof of an electric vehicle. The structural battery is replacing the original steel roof of the vehicle, and part of the original traction battery. The environmental implications of this structural battery roof are investigated with a life cycle assessment, which shows that a structural battery roof can avoid climate impacts in substantive quantities. The main emissions for the structural battery stem from its production and efforts should be focused there to further improve the environmental benefits of the structural battery. Toxicity is investigated with a novel chemical risk assessment from a life cycle perspective, which shows that two chemicals should be targeted for substitution.


2020 ◽  
Vol 12 (20) ◽  
pp. 8613
Author(s):  
Lucas Rosson ◽  
Nolene Byrne

The development of textile recycling solutions is an area of intense research and commercialization. Chemical recycling solutions are becoming increasingly popular due to their ability to separate complex blends and retain or improve the value of the original fiber. The chemical recycling of cotton requires a pre-treatment step to reduce the degree of polymerization (DP). The DP can be reduced in a variety of ways, and here, the environmental footprints of two different pre-treatment approaches are examined using life cycle assessment (LCA); sodium hydroxide pre-treatment and sulphuric acid pre-treatment. We find that the acid pre-treatment has a significantly lower environmental footprint across all impact categories calculated. This is attributed to the lower treatment times required and the lower material and energy requirements for the manufacture of chemicals. The results were normalized to show the most significant impact categories for each pre-treatment, and further environmental implications of the pre-treatments are discussed. The findings will aid academia and industry in implementing the most environmentally benign processes in chemical cotton recycling.


2014 ◽  
Vol 161 ◽  
pp. 158-175 ◽  
Author(s):  
F. Garcia-Launay ◽  
H.M.G. van der Werf ◽  
T.T.H. Nguyen ◽  
L. Le Tutour ◽  
J.Y. Dourmad

Sign in / Sign up

Export Citation Format

Share Document