Thermooxidative degradation of polyolefins in the solid state: Part 5. Kinetics of functional group formation in PE-HD and PE-LLD

1997 ◽  
Vol 55 (1) ◽  
pp. 21-43 ◽  
Author(s):  
F. Gugumus
Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 723
Author(s):  
Mahesh Muraleedharan Nair ◽  
Stéphane Abanades

The CeO2/CeO2−δ redox system occupies a unique position as an oxygen carrier in chemical looping processes for producing solar fuels, using concentrated solar energy. The two-step thermochemical ceria-based cycle for the production of synthesis gas from methane and solar energy, followed by CO2 splitting, was considered in this work. This topic concerns one of the emerging and most promising processes for the recycling and valorization of anthropogenic greenhouse gas emissions. The development of redox-active catalysts with enhanced efficiency for solar thermochemical fuel production and CO2 conversion is a highly demanding and challenging topic. The determination of redox reaction kinetics is crucial for process design and optimization. In this study, the solid-state redox kinetics of CeO2 in the two-step process with CH4 as the reducing agent and CO2 as the oxidizing agent was investigated in an original prototype solar thermogravimetric reactor equipped with a parabolic dish solar concentrator. In particular, the ceria reduction and re-oxidation reactions were carried out under isothermal conditions. Several solid-state kinetic models based on reaction order, nucleation, shrinking core, and diffusion were utilized for deducing the reaction mechanisms. It was observed that both ceria reduction with CH4 and re-oxidation with CO2 were best represented by a 2D nucleation and nuclei growth model under the applied conditions. The kinetic models exhibiting the best agreement with the experimental reaction data were used to estimate the kinetic parameters. The values of apparent activation energies (~80 kJ·mol−1 for reduction and ~10 kJ·mol−1 for re-oxidation) and pre-exponential factors (~2–9 s−1 for reduction and ~123–253 s−1 for re-oxidation) were obtained from the Arrhenius plots.


2015 ◽  
Vol 2015 (7) ◽  
pp. 521-524 ◽  
Author(s):  
N. F. Ibrokhimov ◽  
I. N. Ganiev ◽  
A. E. Berdiev ◽  
N. I. Ganieva

2013 ◽  
Vol 60 (2) ◽  
pp. 43-48
Author(s):  
Stankovičová M. ◽  
Bezáková Ž. ◽  
Beňo P. ◽  
Húšťavová P.

Abstract The substance BK 129 - 1-[2-(2-pentyloxyphenylcarbamoyloxy)-(2-methoxymethyl)-ethyl]-perhydroazepinium chloride was prepared in terms of influence of the connecting chain between the carbamate functional group and the basic part of molecule on biological activity. Such a structural feature is important with regard to its stability. In this work we determined the rate constants of alkaline hydrolysis of this compound at increased temperature under isothermal and non-isothermal conditions. The hydrolysis was also performed in buffer solutions with the purpose of evaluating its stability. Non-isothermal tests of stability enable to reduce the number of analyses. The necessary data for stability of compound are in this way achieved in a short time.


Sign in / Sign up

Export Citation Format

Share Document