isothermal kinetics
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 59)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Velyana G. Georgieva ◽  
Margarita Y. Simeonova ◽  
Sevdalina Chr. Turmanova ◽  
Nikolay M. Marinov

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 245
Author(s):  
Yong Sun ◽  
Yongli Peng ◽  
Yajiao Zhang

In this work, a flame retardant curing agent (DOPO-MAC) composed of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide DOPO and methyl acrylamide (MAC) was synthesized successfully, and the structure of the compound was characterized by FT-IR and 1H-NMR. The non-isothermal kinetics of the epoxy resin/DOPO-MAC system with 1% phosphorus was studied by non-isothermal DSC method. The activation energy of the reaction (Ea), about 46 kJ/mol, was calculated by Kissinger and Ozawa method, indicating that the curing reaction was easy to carry out. The flame retardancy of the epoxy resin system was analyzed by vertical combustion test (UL94) and limiting oxygen index (LOI) test. The results showed that epoxy resin (EP) with 1% phosphorus successfully passed a UL-94 V-0 rating, and the LOI value increased along with the increasing of phosphorus content. It confirmed that DOPO-MAC possessed excellent flame retardance and higher curing reactivity. Moreover, the thermal stability of EP materials was also investigated by TGA. With the DOPO-MAC added, the residual mass of EP materials increased remarkably although the initial decomposition temperature decreased slightly.


Author(s):  
В.О. Попов ◽  
В.Н. Комов ◽  
Е.М. Попенко ◽  
А.В. Сергиенко

Определены формально-кинетические характеристики термораспада нитро-нитрозоаминов и их смесей с октогеном. Реакция разложения нитрозоаналогов октогена и нитро-нитрозопроизводных тетраазадекалина характеризуется меньшей энергией активации по сравнению с октогеном, и протекает с большей скоростью. Проведен анализ активационных параметров термораспада смесей, установлено активирующее влияние нитрозопроизводных тетраазадекалина на разложение октогена. The formal-kinetic characteristics of the thermal decomposition of nitro-nitrosoamines and their mixtures with HMX have been determined. The decomposition reaction of nitroso analogs of HMX and nitro-nitroso derivatives of tetraazadecalin is characterized by a lower activation energy compared to HMX, and proceeds at a higher rate. The analysis of the activation parameters of the thermal decomposition of the mixtures was carried out, the activating effect of the nitroso derivatives of tetraazadecalin on the decomposition of HMX was established.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sucharita Sethy ◽  
Saroj Kumar Samantaray ◽  
Bhabani K. Satapathy

Abstract The effect of multi-walled carbon nanotubes (MWCNT) loading on the crystallization behavior of matrix polyamide 12 (PA-12), in PA-12/polypropylene-MWCNT (PP-MWCNT)-based nanocomposites were analyzed for their non-isothermal crystallization behavior at various cooling rates of 2.5–20 °C/min in differential scanning calorimetry (DSC). Several kinetic models such as Jeziorny (modified-Avrami), Mo and Tobin models were employed to analyze the crystallization behavioral trend with respect to time and temperature of the nanocomposites. The crystallization rate increased half-time of crystallization with MWCNT content as estimated from the Jeziorny theory. The linear agreement between Jeziorny model and experimental relative crystallinity outperforms the Tobin analysis where the coefficient of linear regression was found to be considerably trailing behind and off the satisfactory mark. The Mo model accounts for the percentage crystallinity and thereby successfully explained the crystallization behavior of PA-12 where the kinetic parameters increased with crystallinity indicating higher cooling rate for higher crystallinity. The MWCNT induced crystallization (nucleation activity) values were close to zero irrespective of MWCNT loading which reiterates the enhanced crystallization (rate) of PA-12 in the nanocomposites. Estimations based on Friedman approach showed inter-relationship between activation energy and crystallinity where the later was found to be governed by major (matrix) PA-12 phase.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1344
Author(s):  
Mohammed A. Khelkhal ◽  
Semen E. Lapuk ◽  
Nikita E. Ignashev ◽  
Alexey A. Eskin ◽  
Mikhail Yu. Glyavin ◽  
...  

Peat is a resource used for heat and energy, particularly in countries where peat is abundant and conventional fuels are not available. Some countries have made extensive use of peat resources to produce electricity and heat in addition to light hydrocarbons. By doing so, they were able to reduce the cost of importing fossil fuels. To the best of our knowledge, there is a lack of a detailed description of the peat oxidation process in the presence of other substances. Herein, the process of peat oxidation was studied in-depth by means of thermal analysis in the presence of iron tallate acting as a catalytic agent. Differential scanning calorimetry and thermogravimetric analysis demonstrated an oil-like oxidation behavior during the combustion of the used peat. The process of peat oxidation includes two main regions: low-temperature oxidation (LTO), which occurs during the oxidation of light hydrocarbons, followed by the so-called high-temperature oxidation (HTO), which includes the oxidation of the obtained coke-like product. Moreover, the application of non-isothermal kinetics experiments based on the isoconversional and model approach principle have confirmed the role of 2% iron tallate in peat mass by improving the oxidation rate at low- and high-temperature oxidation (HTO) regions. The results obtained from this study have proven that the added catalyst improves efficiency with regards to the energy activation in the process by leading to its significant decrease from 110.8 ± 7.8 kJ/mol to 81.8 ± 7.5 kJ/mol for LTO and from 157.8 ± 19.1 kJ/mol to 137.6 ± 9.3 kJ/mol for HTO. These findings clearly confirm the improvement in the rate of the process by shifting the LTO and HTO peaks to lower regions in the presence of the catalyst. These results further emphasize the possible impact which could be generated by the application of thermally enhanced oil recovery methods on peat development and exploitation.


Author(s):  
Atae RAOUGUI ◽  
Ion GRECU ◽  
Volkan Murat YILMAZ ◽  
Kenan YILDIZ

In this study, the non-isothermal recrystallization kinetics of cold rolled AA3105 and AA5005 aluminum alloy sheets obtained from ASAŞ Aluminum located in Akyazı-Sakarya was studied by using differential scanning calorimetry (DSC). The non – isothermal kinetics was performed by using Kissenger, Boswell, Ozawa and Starink methods known as model – free methods. The recrystallization temperatures on DSC graphics at different heating rates (β) were deduced and the activation energies were calculated from the slopes from Y – 1/T diagrams. Y is ln(β/T2) for Kissenger, ln(β/T) for Boswell, ln(β) for Ozawa and ln(β/T1.92) for Starink. The results showed that the activation energies of recrystallization are in the range of 194 – 206 kJ/mol for cold rolled AA5005 sheet and in the range of 235 – 257 kJ/mol for cold rolled AA3105 sheet, according to four non-isothermal kinetics model.


Author(s):  
Vanuza O. Santos ◽  
Rayanne O. Araujo ◽  
Flaviana C. P. Ribeiro ◽  
Leandro S. Queiroz ◽  
Mariana N. Guimarães ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document