A new method for assessing fish feeding rhythms using demand feeders and automated data acquisition

1997 ◽  
Vol 16 (4) ◽  
pp. 213-220 ◽  
Author(s):  
Arlo W. Fast ◽  
Tianguang Qin ◽  
James P. Szyper
2021 ◽  
pp. 1351010X2098690
Author(s):  
Romana Rust ◽  
Achilleas Xydis ◽  
Kurt Heutschi ◽  
Nathanael Perraudin ◽  
Gonzalo Casas ◽  
...  

In this paper, we present a novel interdisciplinary approach to study the relationship between diffusive surface structures and their acoustic performance. Using computational design, surface structures are iteratively generated and 3D printed at 1:10 model scale. They originate from different fabrication typologies and are designed to have acoustic diffusion and absorption effects. An automated robotic process measures the impulse responses of these surfaces by positioning a microphone and a speaker at multiple locations. The collected data serves two purposes: first, as an exploratory catalogue of different spatio-temporal-acoustic scenarios and second, as data set for predicting the acoustic response of digitally designed surface geometries using machine learning. In this paper, we present the automated data acquisition setup, the data processing and the computational generation of diffusive surface structures. We describe first results of comparative studies of measured surface panels and conclude with steps of future research.


2008 ◽  
Vol 16 (6) ◽  
pp. 36-39 ◽  
Author(s):  
E. Voelkl ◽  
B. Jiang ◽  
Z.R. Dai ◽  
J.P Bradley

Image acquisition with a CCD camera is a single-press-button activity: after selecting exposure time and adjusting illumination, a button is pressed and the acquired image is perceived as the final, unmodified proof of what was seen in the microscope. Thus it is generally assumed that the image processing steps of e.g., “darkcurrent correction” and “gain normalization” do not alter the information content of the image, but rather eliminate unwanted artifacts.


2020 ◽  
Vol 10 (10) ◽  
pp. 3436
Author(s):  
Abdallah Alsayed ◽  
Raja Kamil ◽  
Hafiz Ramli ◽  
Azizan As’arry

The Upper Extremity Fugl Meyer Assessment (UE-FMA) is the most comprehensive assessment for pinch impairment after stroke. The pinch test of UE-FMA is manually performed by pulling a pincer object away from the patient’s fingers while providing a visual observation that results in a subjective assessment. In this study, an automated data acquisition system that consists of a linear electric actuator applying automatic pulling to the customized pincer object held by the volunteer was developed. The pinch force was measured such that a strain gauge was placed on the pincer object while pulling force was measured using pulling force load cell connected in between the linear electric actuator and customized pincer object. The pincer object’s slip onset was detected using a displacement slip sensor. The mean pinch and pulling force values at the slip onset were 12.17 and 6.25 N for right hands, while mean pinch and pulling force values were 11.67 and 5.92 N for left hands of 50 healthy volunteers, respectively. Based on the paired t-test, there is no significant difference between right and left hands. The automated data acquisition system can objectively apply a pulling force, detect the slip onset, and measure the pinch and pulling forces.


Sign in / Sign up

Export Citation Format

Share Document