feeding rhythms
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 22)

H-INDEX

28
(FIVE YEARS 2)

2022 ◽  
Vol 48 ◽  
pp. 56-67
Author(s):  
Marine Parker ◽  
Etienne Challet ◽  
Bertrand Deputte ◽  
Brunilde Ract-Madoux ◽  
Marie Faustin ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mengxia Niu ◽  
Xiaohang Zhang ◽  
Weihan Li ◽  
Jianxun Wang ◽  
Yan Li

Animals, from insects to humans, exhibit obvious diurnal rhythmicity of feeding behavior. Serving as a genetic animal model, Drosophila has been reported to display feeding rhythms; however, related investigations are limited due to the lack of suitable and practical methods. Here, we present a video recording-based analytical method, namely, Drosophila Feeding Rhythm Analysis Method (dFRAME). Using our newly developed computer program, FlyFeeding, we extracted the movement track of individual flies and characterized their food-approaching behavior. To distinguish feeding and no-feeding events, we utilized high-magnification video recording to optimize our method by setting cut-off thresholds to eliminate the interference of no-feeding events. Furthermore, we verified that this method is applicable to both female and male flies and for all periods of the day. Using this method, we analyzed long-term feeding status of wild-type and period mutant flies. The results recaptured previously reported feeding rhythms and revealed detailed profiles of feeding patterns in these flies under either light/dark cycles or constant dark environments. Together, our dFRAME method enables a long-term, stable, reliable, and subtle analysis of feeding behavior in Drosophila. High-throughput studies in this powerful genetic animal model will gain great insights into the molecular and neural mechanisms of feeding rhythms.


2021 ◽  
pp. 074873042110458
Author(s):  
Carson V. Fulgham ◽  
Austin P. Dreyer ◽  
Anita Nasseri ◽  
Asia N. Miller ◽  
Jacob Love ◽  
...  

Many behaviors exhibit ~24-h oscillations under control of an endogenous circadian timing system that tracks time of day via a molecular circadian clock. In the fruit fly, Drosophila melanogaster, most circadian research has focused on the generation of locomotor activity rhythms, but a fundamental question is how the circadian clock orchestrates multiple distinct behavioral outputs. Here, we have investigated the cells and circuits mediating circadian control of feeding behavior. Using an array of genetic tools, we show that, as is the case for locomotor activity rhythms, the presence of feeding rhythms requires molecular clock function in the ventrolateral clock neurons of the central brain. We further demonstrate that the speed of molecular clock oscillations in these neurons dictates the free-running period length of feeding rhythms. In contrast to the effects observed with central clock cell manipulations, we show that genetic abrogation of the molecular clock in the fat body, a peripheral metabolic tissue, is without effect on feeding behavior. Interestingly, we find that molecular clocks in the brain and fat body of control flies gradually grow out of phase with one another under free-running conditions, likely due to a long endogenous period of the fat body clock. Under these conditions, the period of feeding rhythms tracks with molecular oscillations in central brain clock cells, consistent with a primary role of the brain clock in dictating the timing of feeding behavior. Finally, despite a lack of effect of fat body selective manipulations, we find that flies with simultaneous disruption of molecular clocks in multiple peripheral tissues (but with intact central clocks) exhibit decreased feeding rhythm strength and reduced overall food intake. We conclude that both central and peripheral clocks contribute to the regulation of feeding rhythms, with a particularly dominant, pacemaker role for specific populations of central brain clock cells.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ira H. Gewolb ◽  
Babatunde T. Sobowale ◽  
Frank L. Vice ◽  
Abhijit Patwardhan ◽  
Nino Solomonia ◽  
...  

Background: Suck-swallow rhythmicity and the integration of breathing into infant feeding are developmentally regulated. Neurological injury and breathing abnormalities can both impact feeding in preterm infants.Objective: To determine the effects of neurologic injury independent of effects of disordered breathing on feeding biorhythms in premature infants.Methods: Low-risk preterm infants (LRP), infants with Grade 3–4 Intraventricular Hemorrhage (IVH), those with bronchopulmonary dysplasia (BPD), and those with both BPD and IVH (BPD+IVH) were identified. Forty-seven infants, 32–42 weeks Postmenstrual Age (PMA) were evaluated on one or more occasions (131 studies). Of these, 39 infants (81 studies) were performed at >35 weeks PMA. Coefficient of variation (COV) (=standard deviation of the inter-event (e.g., suck-suck, swallow-breath, etc.) interval divided by the mean of the interval) was used to quantify rhythmic stability.Results: To adjust for PMA, only those infants >35–42 weeks were compared. Suck-suck COV was significantly lower (more rhythmically stable) in the LRP group [COV = 0.274 ± 0.051 (S.D.)] compared to all other groups (BPD = 0.325 ± 0.066; IVH = 0.342 ± 0.072; BPD + IVH = 0.314 ± 0.069; all p < 0.05). Similarly, suck-swallow COV was significantly lower in LRP babies (0.360 ± 0.066) compared to the BPD group (0.475 ± 0.113) and the IVH cohort (0.428 ± 0.075) (p < 0.05). The BPD+IVH group (0.424 ± 0.109), while higher, was not quite statistically significant.Conclusions: Severe IVH negatively impacts suck-suck and suck-swallow rhythms. The independent effect of neurological injury in the form of IVH on feeding rhythms suggests that quantitative analysis of feeding may reflect and predict neurological sequelae.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xuejia He ◽  
Ziyu Wang ◽  
Ziqing Bai ◽  
Liuyu Han ◽  
Mianrun Chen

Small marine copepods are key components of the pelagic food webs in Chinese coastal waters, but very few studies have addressed their trophodynamics, with even fewer studies addressing their diel feeding rhythms. In this study, the diel feeding rhythm and grazing selectivity of the copepod assemblage in Daya Bay during September 30 to October 2, 2014, were studied based on gut pigment analysis. Small copepods (body length < 1.5 mm) including Paracalanus parvus, Temora turbinata, Acrocalanus gibber, Temora stylifera, Euterpe acutifrons, and Acrocalanus gracilis, accounted for 73.9–100% of the total copepod abundance. The copepod assemblage generally exhibited a diurnal feeding pattern, characterized by a higher gut pigment content and ingestion rate during the daytime, consistent with variation in the ambient Chl α concentration. Fifty-five percent of the phytoplankton standing stock per day was consumed by the copepod assemblage, wherein diatoms, prymnesiophytes, and cyanobacteria were the main prey items with average contributions of 19.4–32.9% to the gut pigment contents. The copepod assemblage showed a strong feeding preference for prymnesiophytes, a weak feeding preference for diatoms, and avoidance of cyanobacteria. These results suggest a strong top-down control on phytoplankton community, especially on small groups from small copepods in the Daya Bay ecosystem.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Aidan J. O’Donnell ◽  
Sarah E. Reece

Abstract Background Daily periodicity in the diverse activities of parasites occurs across a broad taxonomic range. The rhythms exhibited by parasites are thought to be adaptations that allow parasites to cope with, or exploit, the consequences of host activities that follow daily rhythms. Malaria parasites (Plasmodium) are well-known for their synchronized cycles of replication within host red blood cells. Whilst most species of Plasmodium appear sensitive to the timing of the daily rhythms of hosts, and even vectors, some species present no detectable rhythms in blood-stage replication. Why the intraerythrocytic development cycle (IDC) of, for example Plasmodium chabaudi, is governed by host rhythms, yet seems completely independent of host rhythms in Plasmodium berghei, another rodent malaria species, is mysterious. Methods This study reports a series of five experiments probing the relationships between the asynchronous IDC schedule of P. berghei and the rhythms of hosts and vectors by manipulating host time-of-day, photoperiod and feeding rhythms. Results The results reveal that: (i) a lack coordination between host and parasite rhythms does not impose appreciable fitness costs on P. berghei; (ii) the IDC schedule of P. berghei is impervious to host rhythms, including altered photoperiod and host-feeding-related rhythms; (iii) there is weak evidence for daily rhythms in the density and activities of transmission stages; but (iv), these rhythms have little consequence for successful transmission to mosquitoes. Conclusions Overall, host rhythms do not affect the performance of P. berghei and its asynchronous IDC is resistant to the scheduling forces that underpin synchronous replication in closely related parasites. This suggests that natural variation in the IDC schedule across species represents different parasite strategies that maximize fitness. Thus, subtle differences in the ecological interactions between parasites and their hosts/vectors may select for the evolution of very different IDC schedules.


Author(s):  
Susanne Klaus ◽  
Carla Igual Gil ◽  
Mario Ost

AbstractThe mammalian system of energy balance regulation is intrinsically rhythmic with diurnal oscillations of behavioral and metabolic traits according to the 24 h day/night cycle, driven by cellular circadian clocks and synchronized by environmental or internal cues such as metabolites and hormones associated with feeding rhythms. Mitochondria are crucial organelles for cellular energy generation and their biology is largely under the control of the circadian system. Whether mitochondrial status might also feed-back on the circadian system, possibly via mitokines that are induced by mitochondrial stress as endocrine-acting molecules, remains poorly understood. Here, we describe our current understanding of the diurnal regulation of systemic energy balance, with focus on fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), two well-known endocrine-acting metabolic mediators. FGF21 shows a diurnal oscillation and directly affects the output of the brain master clock. Moreover, recent data demonstrated that mitochondrial stress-induced GDF15 promotes a day-time restricted anorexia and systemic metabolic remodeling as shown in UCP1-transgenic mice, where both FGF21 and GDF15 are induced as myomitokines. In this mouse model of slightly uncoupled skeletal muscle mitochondria GDF15 proved responsible for an increased metabolic flexibility and a number of beneficial metabolic adaptations. However, the molecular mechanisms underlying energy balance regulation by mitokines are just starting to emerge, and more data on diurnal patterns in mouse and man are required. This will open new perspectives into the diurnal nature of mitokines and action both in health and disease.


2021 ◽  
Vol 118 (3) ◽  
pp. e2015803118
Author(s):  
Benjamin D. Weger ◽  
Cédric Gobet ◽  
Fabrice P. A. David ◽  
Florian Atger ◽  
Eva Martin ◽  
...  

The circadian clock and feeding rhythms are both important regulators of rhythmic gene expression in the liver. To further dissect the respective contributions of feeding and the clock, we analyzed differential rhythmicity of liver tissue samples across several conditions. We developed a statistical method tailored to compare rhythmic liver messenger RNA (mRNA) expression in mouse knockout models of multiple clock genes, as well as PARbZip output transcription factors (Hlf/Dbp/Tef). Mice were exposed to ad libitum or night-restricted feeding under regular light–dark cycles. During ad libitum feeding, genetic ablation of the core clock attenuated rhythmic-feeding patterns, which could be restored by the night-restricted feeding regimen. High-amplitude mRNA expression rhythms in wild-type livers were driven by the circadian clock, but rhythmic feeding also contributed to rhythmic gene expression, albeit with significantly lower amplitudes. We observed that Bmal1 and Cry1/2 knockouts differed in their residual rhythmic gene expression. Differences in mean expression levels between wild types and knockouts correlated with rhythmic gene expression in wild type. Surprisingly, in PARbZip knockout mice, the mean expression levels of PARbZip targets were more strongly impacted than their rhythms, potentially due to the rhythmic activity of the D-box–repressor NFIL3. Genes that lost rhythmicity in PARbZip knockouts were identified to be indirect targets. Our findings provide insights into the diurnal transcriptome in mouse liver as we identified the differential contributions of several core clock regulators. In addition, we gained more insights on the specific effects of the feeding–fasting cycle.


Author(s):  
Manuel Olivares ◽  
Peter Tiselius ◽  
Albert Calbet ◽  
Enric Saiz

Abstract Predators can induce changes in the diel activity patterns of marine copepods. Besides vertical migration, diel feeding rhythms have been suggested as an antipredator phenotypic response. We conducted experiments to assess the non-lethal direct effects of the predator Meganyctiphanes norvegica (northern krill) on the diel feeding patterns of the calanoid copepod Centropages typicus. We also analysed the influence of seasonal photoperiod and prey availability on the intensity of copepod feeding rhythms. We did not detect any large effect of krill presence on the diel feeding behaviour of copepods, either in day-night differences or total daily ingestions. Seasonal photoperiod and prey availability, however, significantly affected the magnitude of copepod feeding cycles, with larger diel differences in shorter days and at lower prey concentrations. Therefore, the role of non-lethal direct effects of predators on the diel feeding activity of marine copepods remain debatable and might not be as relevant as in freshwater zooplankton.


Sign in / Sign up

Export Citation Format

Share Document