Determination of fuzzy logic membership functions using genetic algorithms

2001 ◽  
Vol 118 (2) ◽  
pp. 297-306 ◽  
Author(s):  
Ahmet Arslan ◽  
Mehmet Kaya
2004 ◽  
Vol 10 (5-6) ◽  
pp. 335-341 ◽  
Author(s):  
Mohamed Kissi ◽  
Mohammed Ramdani ◽  
Mustapha Tollabi ◽  
Driss Zakarya

Author(s):  
Pintu Chandra Shill ◽  
Animesh Kumar Paul ◽  
Kazuyuki Murase

In this paper, an integration of fuzzy logic controllers (FLCs) with hybrid genetic algorithms (HGAs) is developed with a view to make the design process fully automatic, without requiring any human expert and numerical data. Our approach consists of two phases: first phase involves selection and definition of fuzzy control rules as well as adjustment of membership functions parameters, while the second phase performs an optimal selection of membership function types corresponding to fuzzy control rules. Learning both parts concurrently represents a way to improve the accuracy of the FLCs to minimize the errors. It has been argued that the performance of FLCs greatly depends on the parameters as well as types of membership functions. Thus, the aforementioned HGAs are a viable solution for designing an efficient adaptive FLCs system. To demonstrate the effectiveness of the proposed method for optimal design of the FLCs, the proposed approach is applied to a well-known benchmark controller design tasks, car and truck-and-trailer like robot system. Simulation results illustrates that proposed optimization approach can find optimal fuzzy rules and their corresponding membership functions types with a high rate of accuracy. The new HGAs optimized adaptive FLCs outperforms not only a passive control strategy but also human-designed FLCs, a neural coded controller with clustering and a neural-fuzzy control algorithm.


2003 ◽  
Vol 7 (18) ◽  
Author(s):  
P. Piñero ◽  
L. Arco ◽  
M. García

2012 ◽  
Vol 9 (2) ◽  
pp. 53-57 ◽  
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov

The main stages of solving the problem of planning movements by mobile robots in a non-stationary working environment based on neural networks, genetic algorithms and fuzzy logic are considered. The features common to the considered intellectual algorithms are singled out and their comparative analysis is carried out. Recommendations are given on the use of this or that method depending on the type of problem being solved and the requirements for the speed of the algorithm, the quality of the trajectory, the availability (volume) of sensory information, etc.


Author(s):  
Yang Chen ◽  
Jiaxiu Yang

In recent years, fuzzy identification based on system identification theory has become a hot academic topic. Interval type-2 fuzzy logic systems (IT2 FLSs) have become a rising technology. This paper designs a type of Nagar-Bardini (NB) structure-based singleton IT2 FLSs for fuzzy identification problems. The antecedents of primary membership functions of IT2 FLSs are chosen as Gaussian type-2 primary membership functions with uncertain standard deviations. Then, the back propagation algorithms are used to tune the parameters of IT2 FLSs according to the chain rule of derivation. Compared with the type-1 fuzzy logic systems, simulation studies show that the proposed IT2 FLSs can obtain better abilities of generalization for fuzzy identification problems.


Sign in / Sign up

Export Citation Format

Share Document