Document image preprocessing based on optimal Boolean filters

2000 ◽  
Vol 80 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Win-Long Lee ◽  
Kuo-Chin Fan
2017 ◽  
Vol 8 (1) ◽  
pp. 61-76 ◽  
Author(s):  
Aicha Eutamene ◽  
Mohamed Khireddine Kholladi ◽  
Djamel Gaceb ◽  
Hacene Belhadef

In the two past decades, solving complex search and optimization problems with bioinspired metaheuristic algorithms has received considerable attention among researchers. In this paper, the image preprocessing is considered as an optimization problem and the PSO (Particle Swarm Optimization) algorithm was been chosen to solve it in order to select the best parameters. The document image preprocessing step is the basis of all other steps in OCR (Optical Character Recognition) system, such as binarization, segmentation, skew correction, layout extraction, textual zones detection and OCR. Without preprocessing, the presence of degradation in the image significantly reduces the performance of these steps. The authors' contribution focuses on the preprocessing of type: smoothing and filtering document images using a new Adaptive Mean Shift algorithm based on the integral image. The local adaptation to the image quality accelerates the conventional smoothing avoiding the preprocessing of homogeneous zones. The authors' goal is to show how PSO algorithm can improve the results quality and the choice of parameters in pre-processing's methods of document images. Comparative studies as well as tests over the existing dataset have been reported to confirm the efficiency of the proposed approach.


2019 ◽  
Vol 2 (3) ◽  
pp. 206-215
Author(s):  
Alesya Ishchenko ◽  
Alexandr Nesteryuk ◽  
Marina Polyakova

2020 ◽  
Vol 2020 (9) ◽  
pp. 323-1-323-8
Author(s):  
Litao Hu ◽  
Zhenhua Hu ◽  
Peter Bauer ◽  
Todd J. Harris ◽  
Jan P. Allebach

Image quality assessment has been a very active research area in the field of image processing, and there have been numerous methods proposed. However, most of the existing methods focus on digital images that only or mainly contain pictures or photos taken by digital cameras. Traditional approaches evaluate an input image as a whole and try to estimate a quality score for the image, in order to give viewers an idea of how “good” the image looks. In this paper, we mainly focus on the quality evaluation of contents of symbols like texts, bar-codes, QR-codes, lines, and hand-writings in target images. Estimating a quality score for this kind of information can be based on whether or not it is readable by a human, or recognizable by a decoder. Moreover, we mainly study the viewing quality of the scanned document of a printed image. For this purpose, we propose a novel image quality assessment algorithm that is able to determine the readability of a scanned document or regions in a scanned document. Experimental results on some testing images demonstrate the effectiveness of our method.


2020 ◽  
Vol 64 (3) ◽  
pp. 30401-1-30401-14 ◽  
Author(s):  
Chih-Hsien Hsia ◽  
Ting-Yu Lin ◽  
Jen-Shiun Chiang

Abstract In recent years, the preservation of handwritten historical documents and scripts archived by digitized images has been gradually emphasized. However, the selection of different thicknesses of the paper for printing or writing is likely to make the content of the back page seep into the front page. In order to solve this, a cost-efficient document image system is proposed. In this system, the authors use Adaptive Directional Lifting-Based Discrete Wavelet Transform to transform image data from spatial domain to frequency domain and perform on high and low frequencies, respectively. For low frequencies, the authors use local threshold to remove most background information. For high frequencies, they use modified Least Mean Square training algorithm to produce a unique weighted mask and perform convolution on original frequency, respectively. Afterward, Inverse Adaptive Directional Lifting-Based Discrete Wavelet Transform is performed to reconstruct the four subband images to a resulting image with original size. Finally, a global binarization method, Otsu’s method, is applied to transform a gray scale image to a binary image as the output result. The results show that the difference in operation time of this work between a personal computer (PC) and Raspberry Pi is little. Therefore, the proposed cost-efficient document image system which performed on Raspberry Pi embedded platform has the same performance and obtains the same results as those performed on a PC.


Sign in / Sign up

Export Citation Format

Share Document